51 resultados para Neutron scattering and diffraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a synthetic strategy, extended anionic, homo and bimetallic oxalato-bridged transition-metal compounds with two (2D) and three-dimensional (3D) connectivities can be synthesized and crystallized. Thereby, the choice of the templating counterions will determine the crystal chemistry. Since the oxalato bridge is a mediator for both antiferro and ferromagnetic interactions between similar and dissimilar metal ions, long-range magnetic ordering will occur. Examples of the determination of magnetic structures in 2D and 3D compounds by means of elastic neutron scattering methods will be discussed. In addition, due to the possibility of the variation of different metal ions in varying oxidation states, interesting photophysical processes can be observed within the extended three-dimensional host/guest systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymeric two- and three-dimensional, homo- and heterometallic oxalatebridged coordination compounds offer exciting opportunities, mainly in the fields of molecular magnetism and photophysics. Given that a large variety of magnetic phenomena have been reported so far from these molecular magnets, very limited experience is gained from elastic neutron scattering experiments. Therefore, with two examples, we will address the topic of the elucidation of magnetic structures by means of the neutron scattering technique. In addition, due to the possibility of the variation of different metal ions in varying oxidation states, interesting photophysical processes can be observed within the extended three-dimensional host/guest systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(1-)), acac (= pentane-2,4-dionate(1-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation into the physical consequences of including a Jahn-Teller distorted Cu(II) ion within an antiferromagnetically coupled ring, [R(2)NH(2)][Cr(7)CuF(8)((O(2)C(t)Bu)(16))] is reported. Inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) spectroscopic data are simulated using a microscopic spin Hamiltonian, and show that the two Cr-Cu exchange interactions must be inequivalent. One Cr-Cu exchange is found to be antiferromagnetic and the other ferromagnetic. The geometry of the Jahn-Teller elongation is deduced from these results, and shows that a Jahn-Teller elongation axis must lie in the plane of the Cr(7)Cu wheel; the elongation is not observed by X-ray crystallography, due to positional disorder of the Cu site within the wheel. An electronic structure calculation confirms the structural distortion of the Cu site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagnet LiErF4 have been identified. Below x = 0.86, an embedded spin-glass phase is observed, where a spin glass exists within the ferromagnetic structure. Below x = 0.57, an Ising spin glass is observed consisting of frozen needlelike clusters. For x ∼ 0.3–0.1, an antiferromagnetically coupled spin glass occurs. A reduction of TC(x) for the ferromagnet is observed which disobeys the mean-field predictions that worked for LiHoxY1-xF4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The translational diffusion of water in compacted clays at a high hydration level has been investigated by quasielastic neutron scattering at a time-of-flight spectrometer FOCUS (SINQ). Four compacted clays with systematic structural differences have been studied: Na-montmorillonite, Na-illite, kaolinite and pyrophyllite. The QENS experiments were performed using two different incident wavelengths in order to access a larger Q range and verify the data analysis. The translational diffusion coefficient for water in Na-montmorillonite and Na-illite are lower than those for bulk water, whereas the preliminary results for kaolinite and pyrophyllite show larger diffusion coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on analyticity, unitarity, and Lorentz invariance the contribution from hadronic vacuum polarization to the anomalous magnetic moment of the muon is directly related to the cross section of e+e− → hadrons. We review the main difficulties that impede such an approach for light-by-light scattering and identify the required ingredients from experiment. Amongst those, the most critical one is the scattering of two virtual photons into meson pairs. We analyze the analytic structure of the process γ*γ* → ππ and show that the usual Muskhelishvili–Omnès representation can be amended in such a way as to remain valid even in the presence of anomalous thresholds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many designs for radioactive waste repositories, cement and clay will come into direct contact. The geochemical contrast between cement and clay will lead to mass fluxes across the interface, which consequently results in alteration of structural and transport properties of both materials that may affect the performance of the multi-barrier system. We present an experimental approach to study cement-clay interactions with a cell to accommodate small samples of cement and clay. The cell design allows both in situ measurement of water content across the sample using neutron radiography and measurement of transport parameters using through-diffusion tracer experiments. The aim of the high- resolution neutron radiography experiments was to monitor changes in water content (porosity) and their spatial extent. Neutron radiographs of several evolving cement-clay interfaces delivered quantitative data which allow resolving local water contents within the sample domain. In the present work we explored the uncertainties of the derived water contents with regard to various input parameters and with regard to the applied image correction procedures. Temporal variation of measurement conditions created absolute uncertainty of the water content in the order of ±0.1 (m3/m3), which could not be fully accounted for by correction procedures. Smaller relative changes in water content between two images can be derived by specific calibrations to two sample regions with different, invariant water contents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radiation dose rates at flight altitudes can increase by orders of magnitude for a short time during energetic solar cosmic ray events, so called ground level enhancements (GLEs). Especially at high latitudes and flight altitudes, solar energetic particles superposed on galactic cosmic rays may cause radiation that exceeds the maximum allowed dosage limit for the general public. Therefore the determination of the radiation dose rate during GLEs should be as reliable as possible. Radiation dose rates along flight paths are typically determined by computer models that are based on cosmic ray flux and anisotropy parameters derived from neutron monitor and/or satellite measurements. The characteristics of the GLE on 15 April 2001 (GLE60) were determined and published by various authors. In this work we compare these results and investigate the consequences on the computed radiation dose rates along selected flight paths. In addition, we compare the computed radiation dose rates with measurements that were made during GLE60 on board two transatlantic flights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a coupled system of integral equations for the pp → ¯NN and ¯K K → ¯N N S-waves derived from Roy–Steiner equations for pion–nucleon scattering. We discuss the solution of the corresponding two-channel Muskhelishvili–Omnès problem and apply the results to a dispersive analysis of the scalar form factor of the nucleon fully including ¯KK intermediate states. In particular, we determine the corrections Ds and DD, which are needed for the extraction of the pion– nucleon s term from pN scattering, and show that the difference DD −Ds = (−1.8±0.2)MeV is insensitive to the input pN parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the e+e−→3π cross section, generalizing previous studies on ω,ϕ→3π decays and γπ→ππ scattering, and verify our result by comparing to e+e−→π0γ data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below 1GeV, and extract the slope of the form factor at vanishing momentum transfer aπ=(30.7±0.6)×10−3. We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy-autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS Brca1(-/-); p53(-/-) mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributions sensitive to the underlying event in QCD jet events have been measured with the ATLAS detector at the LHC, based on 37 pb−1 of proton–proton collision data collected at a centre-of-mass energy of 7 TeV. Chargedparticle mean pT and densities of all-particle ET and chargedparticle multiplicity and pT have been measured in regions azimuthally transverse to the hardest jet in each event. These are presented both as one-dimensional distributions and with their mean values as functions of the leading-jet transverse momentum from 20 to 800 GeV. The correlation of chargedparticle mean pT with charged-particle multiplicity is also studied, and the ET densities include the forward rapidity region; these features provide extra data constraints for Monte Carlo modelling of colour reconnection and beamremnant effects respectively. For the first time, underlying event observables have been computed separately for inclusive jet and exclusive dijet event selections, allowing more detailed study of the interplay of multiple partonic scattering and QCD radiation contributions to the underlying event. Comparisonsto the predictions of different Monte Carlo models show a need for further model tuning, but the standard approach is found to generally reproduce the features of the underlying event in both types of event selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).