38 resultados para Mitochondrial DNA replication
Resumo:
We report on a family with a 12-year-old boy who suffered from a maternally inherited syndrome characterized by a combination of sensorineural hearing loss, myoclonus epilepsy, ataxia, severe psychomotor retardation, short stature, and diabetes mellitus. First, he showed a muscular hypotonia with hearing loss; later, he developed a myoclonus epilepsy, growth failure, and severe psychomotor retardation. At the age of 10 years, he developed diabetes mellitus. After initiation of combined ubiquinone and vitamin C treatment, we observed a progression in psychomotor development. Lactate and pyruvate levels in blood and cerebrospinal fluid were normal. No ragged red fibers or ultrastructural abnormalities were seen in a skeletal muscle biopsy. Biochemical assays of respiratory chain complex activities revealed decreased activity of complexes I and IV. By sequence analysis of mitochondrial DNA encoding transfer ribonucleic acids (RNAs), a homoplasmic T to C substitution at nucleotide position 7512 was found affecting a highly conserved base pair in the tRNA(ser(UCN)) acceptor stem. Asymptomatic family members of the maternal line were heteroplasmic for the mutation in blood samples. Analysis of mitochondrial DNA in patients with hearing loss and myoclonus epilepsy is recommended, even in the absence of laboratory findings. Therapeutically, ubiquinone and antioxidants can be beneficial.
Resumo:
Tumor suppressor genes, such as p53, RB, the INK4-ARF family and PML, suppress malignant transformation by regulating cell cycle progression, ensuring the fidelity of DNA replication and chromosomal segregation, or by inducing apoptosis in response to potentially deleterious events. In myeloid leukemia, hematopoietic differentiation resulting from highly coordinated, stage-wise expression of myeloid transcription and soluble signaling factors is disrupted leading to a block in terminal differentiation and uncontrolled proliferation. This virtually always involves functional inactivation or genetic disruption of one or several tumor suppressor genes in order to circumvent their checkpoint control and apoptosis-inducing functions. Hence, reactivation of tumor suppressor gene function has therapeutic potential and can possibly enhance conventional cytotoxic chemotherapy. In this review, we focus on the role of different tumor suppressor genes in myeloid differentiation and leukemogenesis, and discuss implications for therapy.
Resumo:
Major environmental events that fragment populations among multiple island habitats have potential to drive large-scale episodes of speciation and adaptive radiation. A recent palaeolimnological study of sediment cores indicated that Lake Malawi underwent major climate-driven desiccation events 75 000-135 000 years ago that lowered the water level to at least 580 m below the present state and severely reduced surface area. After this period, lake levels rose and stabilized, creating multiple discontinuous littoral rocky habitats. Here, we present evidence supporting the hypothesis that establishment and expansion of isolated philopatric rock cichlid populations occurred after this rise and stabilization of lake level. We studied the Pseudotropheus (Maylandia) species complex, a group with both allopatric and sympatric populations that differ in male nuptial colour traits and tend to mate assortatively. Using coalescent analyses based on mitochondrial DNA, we found evidence that populations throughout the lake started to expand and accumulate genetic diversity after the lake level rise. Moreover, most haplotypes were geographically restricted, and the greatest genetic similarities were typically among sympatric or neighbouring populations. This is indicative of limited dispersal and establishment of assortative mating among populations following the lake level rise. Together, this evidence is compatible with a single large-scale environmental event being central to evolution of spatial patterns of genetic and species diversity in P. (Maylandia) and perhaps other Lake Malawi rock cichlids. Equivalent climate-driven pulses of habitat formation and fragmentation may similarly have contributed to observed rapid and punctuated cladogenesis in other adaptive radiations.
Resumo:
The role of Pleistocene glacial cycles in forming the contemporary genetic structure of organisms has been well studied in China with a particular focus on the Tibetan Plateau. However, China has a complex topography and diversity of local climates, and how glacial cycles may have shaped the subtropical and tropical biota of the region remains mostly unaddressed. To investigate the factors that affected the phylogeography and population history of a widely distributed and nondeciduous forest species, we analysed morphological characters, mitochondrial DNA sequences and nuclear microsatellite loci in the Silver Pheasant (Lophura nycthemera). In a pattern generally consistent with phenotypic clusters, but not nominal subspecies, deeply divergent mitochondrial lineages restricted to different geographic regions were detected. Coalescent simulations indicated that the time of main divergence events corresponded to major glacial periods in the Pleistocene and gene flow was only partially lowered by drainage barriers between some populations. Intraspecific cytonuclear discordance was revealed in mitochondrial lineages from Hainan Island and the Sichuan Basin with evidence of nuclear gene flow from neighbouring populations into the latter. Unexpectedly, hybridization was revealed in Yingjiang between the Silver Pheasant and Kalij Pheasant (Lophura leucomelanos) with wide genetic introgression at both the mtDNA and nuclear levels. Our results highlight a novel phylogeographic pattern in a subtropical area generated from the combined effects of climate oscillation, partial drainage barriers and interspecific hybridization. Cytonuclear discordance combined with morphological differentiation implies that complex historical factors shaped the divergence process in this biodiversity hot spot area of southern China.
Resumo:
Hybrid zones provide excellent opportunities to study processes and mechanisms underlying reproductive isolation and speciation. Here we investigated sex-specific clines of molecular markers in hybrid zones of morphologically cryptic yet genetically highly-diverged evolutionary lineages of the European common vole (Microtus arvalis). We analyzed the position and width of four secondary contact zones along three independent transects in the region of the Alps using maternally (mitochondrial DNA) and paternally (Y-chromosome) inherited genetic markers. Given male-biased dispersal in the common vole, a selectively neutral secondary contact would show broader paternal marker clines than maternal ones. In a selective case, for example, involving a form of Haldane’s rule, Y-chromosomal clines would not be expected to be broader than maternal markers because they are transmitted by the heterogametic sex and thus gene flow would be restricted. Consistent with the selective case, paternal clines were significantly narrower or at most equal in width to maternal clines in all contact zones. In addition, analyses using maximum likelihood cline-fitting detected a shift of paternal relative to maternal clines in three of four contact zones. These patterns suggest that processes at the contact zones in the common vole are not selectively neutral, and that partial reproductive isolation is already established between these evolutionary lineages. We conclude that hybrid zone movement, sexual selection and/or genetic incompatibilities are likely associated with an unusual unidirectional manifestation of Haldane’s rule in this common European mammal.
Resumo:
The greater Himalayan region demarcates two of the most prominent linguistic phyla in Asia: Tibeto-Burman and Indo-European. Previous genetic surveys, mainly using Y-chromosome polymorphisms and/or mitochondrial DNA polymorphisms suggested a substantially reduced geneflow between populations belonging to these two phyla. These studies, however, have mainly focussed on populations residing far to the north and/or south of this mountain range, and have not been able to study geneflow patterns within the greater Himalayan region itself. We now report a detailed, linguistically informed, genetic survey of Tibeto-Burman and Indo-European speakers from the Himalayan countries Nepal and Bhutan based on autosomal microsatellite markers and compare these populations with surrounding regions. The genetic differentiation between populations within the Himalayas seems to be much higher than between populations in the neighbouring countries. We also observe a remarkable genetic differentiation between the Tibeto-Burman speaking populations on the one hand and Indo-European speaking populations on the other, suggesting that language and geography have played an equally large role in defining the genetic composition of present-day populations within the Himalayas.
Resumo:
Basophils are primarily associated with immunomodulatory functions in allergic diseases and parasitic infections. Recently, it has been demonstrated that both activated human and mouse basophils can form extracellular DNA traps (BETs) containing mitochondrial DNA and granule proteins. In this report, we provide evidence that, in spite of an apparent lack of phagocytic activity, basophils can kill bacteria through BET formation.
Resumo:
Metallocene dichlorides constitute a remarkable class of antineoplastic agents that are highly effective against several cancer cell lines. They were shown to accumulate in the DNA-rich region, which suggests DNA as the primary target. These compounds exhibit two cyclopentadienyl ligands and two labile halide ligands, resulting in a bent sandwich structure. The cis-dihalide motif is structurally related to the cis-chloro configuration of cisplatin and similar modes of action can thus be assumed. Cisplatin binds to two neighboring guanine nucleobases in DNA and consequently, distorts the double-helix, thereby inhibiting DNA replication and transcription. Platinum is classified as a soft Lewis acid and binds preferentially to the nitrogen atoms within the nucleobases. The metallocene dichlorides investigated in this study comprise the metal centers Ti, V, Nb, Mo, Hf, and W, which are classified as hard or intermediate Lewis acids, and thus, favor binding to the phosphate oxygen. Although several studies reported adduct formation of metallocene dichlorides with nucleic acids, substantial information about the adduct composition, the binding pattern, and the nucleobase selectivity has not been provided yet. ESI-MS analyses gave evidence for the formation of metallocene adducts (M = Ti, V, Mo, and W) with single-stranded DNA homologues at pH 7. No adducts were formed with Nb and Hf at neutral pH, albeit adducts with Nb were observed at a low pH. MS2 data revealed considerable differences of the adduct compositions. The product ion spectra of DNA adducts with hard Lewis acids (Ti, V) gave evidence for the loss of metallocene ligands and only moderate backbone fragmentation was observed. By contrast, adducts with intermediate Lewis acids (Mo, W) retained the hydroxy ligands. Preliminary results are in good agreement with the Pearson concept and DFT calculations. Since the metallodrugs were not lost upon CID, the nucleobase selectivity, stoichiometry, and binding patterns can be elucidated by means of tandem mass spectrometry.