36 resultados para Fractional Operator
Resumo:
We calculate the O(αs) corrections to the double differential decay width dΓ77/(ds1ds2) for the process B¯→Xsγγ, originating from diagrams involving the electromagnetic dipole operator O7. The kinematical variables s1 and s2 are defined as si=(pb−qi)2/m2b, where pb, q1, q2 are the momenta of the b quark and two photons. We introduce a nonzero mass ms for the strange quark to regulate configurations where the gluon or one of the photons become collinear with the strange quark and retain terms which are logarithmic in ms, while discarding terms which go to zero in the limit ms→0. When combining virtual and bremsstrahlung corrections, the infrared and collinear singularities induced by soft and/or collinear gluons drop out. By our cuts the photons do not become soft, but one of them can become collinear with the strange quark. This implies that in the final result a single logarithm of ms survives. In principle, the configurations with collinear photon emission could be treated using fragmentation functions. In a related work we find that similar results can be obtained when simply interpreting ms appearing in the final result as a constituent mass. We do so in the present paper and vary ms between 400 and 600 MeV in the numerics. This work extends a previous paper by us, where only the leading power terms with respect to the (normalized) hadronic mass s3=(pb−q1−q2)2/m2b were taken into account in the underlying triple differential decay width dΓ77/(ds1ds2ds3).
Resumo:
BACKGROUND Acute kidney injury (AKI) is common in dogs. Few studies have assessed sequential changes in indices of kidney function in dogs with naturally occurring AKI. OBJECTIVE To document sequential changes of conventional indices of renal function, to better define the course of AKI, and to identify a candidate marker for recovery. ANIMALS Ten dogs with AKI. METHODS Dogs were prospectively enrolled and divided into surviving and nonsurviving dogs. Urine production was measured with a closed system for 7 days. One and 24-hour urinary clearances were performed daily to estimate solute excretion and glomerular filtration rate (GFR). Solute excretion was calculated as an excretion ratio (ER) and fractional clearance (FC) based on both the 1- and 24-hour urine collections. RESULTS Four dogs survived and 6 died. At presentation, GFR was not significantly different between the outcome groups, but significantly (P = .03) increased over time in the surviving, but not in the nonsurviving dogs. Fractional clearance of Na decreased significantly over time (20.2-9.4%, P < .0001) in the surviving, but not in the nonsurviving dogs. The ER and FC of solutes were highly correlated (r, 0.70-0.95). CONCLUSION AND CLINICAL IMPACT Excretion ratio might be used in the clinical setting as a surrogate marker to follow trends in solute excretion. Increased GFR, urine production, and decreased FC of Na were markers of renal recovery. The FC of Na is a simple, noninvasive, and cost-effective method that can be used to evaluate recovery of renal function.
Resumo:
We introduce the block numerical range Wn(L) of an operator function L with respect to a decomposition H = H1⊕. . .⊕Hn of the underlying Hilbert space. Our main results include the spectral inclusion property and estimates of the norm of the resolvent for analytic L . They generalise, and improve, the corresponding results for the numerical range (which is the case n = 1) since the block numerical range is contained in, and may be much smaller than, the usual numerical range. We show that refinements of the decomposition entail inclusions between the corresponding block numerical ranges and that the block numerical range of the operator matrix function L contains those of its principal subminors. For the special case of operator polynomials, we investigate the boundedness of Wn(L) and we prove a Perron-Frobenius type result for the block numerical radius of monic operator polynomials with coefficients that are positive in Hilbert lattice sense.
Resumo:
We explore a generalisation of the L´evy fractional Brownian field on the Euclidean space based on replacing the Euclidean norm with another norm. A characterisation result for admissible norms yields a complete description of all self-similar Gaussian random fields with stationary increments. Several integral representations of the introduced random fields are derived. In a similar vein, several non-Euclidean variants of the fractional Poisson field are introduced and it is shown that they share the covariance structure with the fractional Brownian field and converge to it. The shape parameters of the Poisson and Brownian variants are related by convex geometry transforms, namely the radial pth mean body and the polar projection transforms.
Resumo:
We calculate the anomalous dimensions of operators with large global charge J in certain strongly coupled conformal field theories in three dimensions, such as the O(2) model and the supersymmetric fixed point with a single chiral superfield and a W = Φ3 superpotential. Working in a 1/J expansion, we find that the large-J sector of both examples is controlled by a conformally invariant effective Lagrangian for a Goldstone boson of the global symmetry. For both these theories, we find that the lowest state with charge J is always a scalar operator whose dimension ΔJ satisfies the sum rule J2ΔJ−(J22+J4+316)ΔJ−1−(J22+J4+316)ΔJ+1=0.04067 up to corrections that vanish at large J . The spectrum of low-lying excited states is also calculable explcitly: for example, the second-lowest primary operator has spin two and dimension ΔJ+3√. In the supersymmetric case, the dimensions of all half-integer-spin operators lie above the dimensions of the integer-spin operators by a gap of order J+12. The propagation speeds of the Goldstone waves and heavy fermions are 12√ and ±12 times the speed of light, respectively. These values, including the negative one, are necessary for the consistent realization of the superconformal symmetry at large J.