84 resultados para Evolutionary tuning
Resumo:
Vicariance is thought to have played a major role in the evolution of modern parrots. However, as the relationships especially of the African taxa remained mostly unresolved, it has been difficult to draw firm conclusions about the roles of dispersal and vicariance. Our analyses using the broadest taxon sampling of old world parrots ever based on 3219 bp of three nuclear genes revealed well-resolved and congruent phylogenetic hypotheses. Agapornis of Africa and Madagascar was found to be the sister group to Loriculus of Australasia and Indo-Malayasia and together they clustered with the Australasian Loriinae, Cyclopsittacini and Melopsittacus. Poicephalus and Psittacus from mainland Africa formed the sister group Of the Neotropical Arini and Coracopsis from Madagascar and adjacent islands may be the closest relative of Psittrichas from New Guinea. These biogeographic relationships are best explained by independent colonization of the African continent via trans-oceanic dispersal from Australasia and Antarctica in the Paleogene following what may have been vicariance events in the late Cretaceous and/or early Paleogene. Our data support a taxon pulse model for the diversification of parrots whereby trans-oceanic dispersal played a more important role than previously thought and was the prerequisite for range expansion into new continents. (C) 2009 Elsevier Inc. All rights reserved
Resumo:
We have studied Au(55 nm)@SiO2 nanoparticles (NPs) on two low-index phases of gold and platinum single crystal electrodes in ClO4– and SO42– ion-containing electrolytes by both electrochemical methods and in-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). We showed the blocking of the electrode with surfactants originating from the synthesis of as-prepared SHINERS NPs. We introduce an efficient procedure to overcome this problem, which provides a fundamental platform for the application of SHINERS in surface electrochemistry and beyond. Our method is based on a hydrogen evolution treatment of the SHINERS-NP-modified single-crystal surfaces. The reliability of our preparation strategy is demonstrated in electrochemical SHINERS experiments on the potential-controlled adsorption and phase formation of pyridine on Au(hkl) and Pt(hkl). We obtained high-quality Raman spectra on these well-defined and structurally carefully characterized single-crystal surfaces. The analysis of the characteristic A1 vibrational modes revealed perfect agreement with the interpretation of single-crystal voltammetric and chronoamperometric experiments. Our study demonstrates that the SHINERS protocol developed in this work qualifies this Raman method as a pioneering approach with unique opportunities for in situ structure and reactivity studies at well-defined electrochemical solid/liquid interfaces.
Resumo:
Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
A 318-metre-long sedimentary profile drilled by the International Continental Scientific Drilling Program (ICDP) at Site 5011-1 in Lake El’gygytgyn, Far East Russian Arctic, has been analysed for its sedimentologic response to global climate modes by chronostratigraphic methods. The 12 km wide lake is sited off-centre in an 18 km large crater that was created by the impact of a meteorite 3.58 Ma ago. Since then sediments have been continuously deposited. For establishing their chronology, major reversals of the earth’s magnetic field provided initial tie points for the age model, confirming that the impact occurred in the earliest geomagnetic Gauss chron. Various stratigraphic parameters, reflecting redox conditions at the lake floor and climatic conditions in the catchment were tuned synchronously to Northern Hemisphere insolation variations and the marine oxygen isotope stack, respectively. Thus, a robust age model comprising more than 600 tie points could be defined. It could be shown that deposition of sediments in Lake El’gygytgyn occurred in concert with global climatic cycles. The upper �160m of sediments represent the past 3.3 Ma, equivalent to sedimentation rates of 4 to 5 cm ka−1, whereas the lower 160m represent just the first 0.3 Ma after the impact, equivalent to sedimentation rates in the order of 45 cm ka−1. This study also provides orbitally tuned ages for a total of 8 tephras deposited in Lake El’gygytgyn.
Resumo:
Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic ‘ark’. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island.
Resumo:
Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.
Resumo:
The past decade has seen the rise of high resolution datasets. One of the main surprises of analysing such data has been the discovery of a large genetic, phenotypic and behavioural variation and heterogeneous metabolic rates among individuals within natural populations. A parallel discovery from theory and experiments has shown a strong temporal convergence between evolutionary and ecological dynamics, but a general framework to analyse from individual-level processes the convergence between ecological and evolutionary dynamics and its implications for patterns of biodiversity in food webs has been particularly lacking. Here, as a first approximation to take into account intraspecific variability and the convergence between the ecological and evolutionary dynamics in large food webs, we develop a model from population genomics and microevolutionary processes that uses sexual reproduction, genetic-distance-based speciation and trophic interactions. We confront the model with the prey consumption per individual predator, species-level connectance and prey–predator diversity in several environmental situations using a large food web with approximately 25,000 sampled prey and predator individuals. We show higher than expected diversity of abundant species in heterogeneous environmental conditions and strong deviations from the observed distribution of individual prey consumption (i.e. individual connectivity per predator) in all the environmental conditions. The observed large variance in individual prey consumption regardless of the environmental variability collapsed species-level connectance after small increases in sampling effort. These results suggest (1) intraspecific variance in prey–predator interactions has a strong effect on the macroscopic properties of food webs and (2) intraspecific variance is a potential driver regulating the speed of the convergence between ecological and evolutionary dynamics in species-rich food webs. These results also suggest that genetic–ecological drift driven by sexual reproduction, equal feeding rate among predator individuals, mutations and genetic-distance-based speciation can be used as a neutral food web dynamics test to detect the ecological and microevolutionary processes underlying the observed patterns of individual and species-based food webs at local and macroecological scales.
Resumo:
Electronic tuning effects of substituents at the 4- and 8-positions of benzothiadiazole (BTD) within the fused tetrathiafulvalene–BTD donor–acceptor dyad have been studied. The electron acceptor strength of BTD is greatly increased by replacing Br with CN groups, extending the optical absorption of the small dyad into the near-IR region and importantly, the charge transport can be switched from p-type to ambipolar behaviour.
Resumo:
Cichlid fish inhabit a diverse range of environments that vary in the spectral content of light available for vision. These differences should result in adaptive selective pressure on the genes involved in visual sensitivity, the opsin genes. This study examines the evidence for differential adaptive molecular evolution in East African cichlid opsin genes due to gross differences in environmental light conditions. First, we characterize the selective regime experienced by cichlid opsin genes using a likelihood ratio test format, comparing likelihood models with different constraints on the relative rates of amino acid substitution, across sites. Second, we compare turbid and clear lineages to determine if there is evidence of differences in relative rates of substitution. Third, we present evidence of functional diversification and its relationship to the photic environment among cichlid opsin genes. We report statistical evidence of positive selection in all cichlid opsin genes, except short wavelength–sensitive 1 and short wavelength–sensitive 2b. In all genes predicted to be under positive selection, except short wavelength–sensitive 2a, we find differences in selective pressure between turbid and clear lineages. Potential spectral tuning sites are variable among all cichlid opsin genes; however, patterns of substitution consistent with photic environment–driven evolution of opsin genes are observed only for short wavelength–sensitive 1 opsin genes. This study identifies a number of promising candidate-tuning sites for future study by site-directed mutagenesis. This work also begins to demonstrate the molecular evolutionary dynamics of cichlid visual sensitivity and its relationship to the photic environment.
Resumo:
We study the tuning curve of entangled photons generated by type-0 spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate crystal. We demonstrate the X-shaped spatiotemporal structure of the spectrum by means of measurements and numerical simulations. Experiments for different pump waists, crystal temperatures, and crystal lengths are in good agreement with numerical simulations.