41 resultados para Ecology Evolution and Organismal Biology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A major task in ecology is to establish the degree of generality of ecological mechanisms. Here we present results from a multi-species experiment that tested whether a set of invasive species altered the soil conditions to the detriment of other species by releasing allelopathic compounds or inducing shifts in soil biota composition, and whether this effect was more pronounced relative to a set of closely related native species. We pre-cultivated soil with 23 exotic invasive, 19 related native and 6 related exotic garden species and used plain soil as a control. To separate allelopathy from effects on the soil biota, we sterilized half of the soil. Then, we compared the effect of soil pre-cultivation and sterilization on germination and growth of four native test species in two experiments. The general effect of soil sterilization was positive. The effect of soil pre-cultivation on test species performance was neutral to positive, and sterilization reduced this positive effect. This indicates general absence of allelopathic compounds and a shift toward a less antagonistic soil biota by cultivation species. In both experiments, pre-cultivation effects did not differ systematically between exotic invasive, exotic garden or native species. Our results do not support the hypothesis that invasive plants generally inhibit the growth of others by releasing allelopathic compounds or accumulating a detrimental soil biota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical models predict lognormal species abundance distributions (SADs) in stable and productive environments, with log-series SADs in less stable, dispersal driven communities. We studied patterns of relative species abundances of perennial vascular plants in global dryland communities to: (i) assess the influence of climatic and soil characteristics on the observed SADs, (ii) infer how environmental variability influences relative abundances, and (iii) evaluate how colonisation dynamics and environmental filters shape abundance distributions. We fitted lognormal and log-series SADs to 91 sites containing at least 15 species of perennial vascular plants. The dependence of species relative abundances on soil and climate variables was assessed using general linear models. Irrespective of habitat type and latitude, the majority of the SADs (70.3%) were best described by a lognormal distribution. Lognormal SADs were associated with low annual precipitation, higher aridity, high soil carbon content, and higher variability of climate variables and soil nitrate. Our results do not corroborate models predicting the prevalence of log-series SADs in dryland communities. As lognormal SADs were particularly associated with sites with drier conditions and a higher environmental variability, we reject models linking lognormality to environmental stability and high productivity conditions. Instead our results point to the prevalence of lognormal SADs in heterogeneous environments, allowing for more evenly distributed plant communities, or in stressful ecosystems, which are generally shaped by strong habitat filters and limited colonisation. This suggests that drylands may be resilient to environmental changes because the many species with intermediate relative abundances could take over ecosystem functioning if the environment becomes suboptimal for dominant species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Garrett Hardin's tragedy of the commons is an analogy that shows how individuals driven by self-interest can end up destroying the resource upon which they all depend. The proposed solutions for humans rely on highly advanced skills such as negotiation, which raises the question of how non-human organisms manage to resolve similar tragedies. In recent years, this question has promoted evolutionary biologists to apply the tragedy of the commons to a wide range of biological systems. Here, we provide tools to categorize different types of tragedy and review different mechanisms, including kinship, policing and diminishing returns that can resolve conflicts that could otherwise end in tragedy. A central open question, however, is how often biological systems are able to resolve these scenarios rather than drive themselves extinct through individual-level selection favouring self-interested behaviours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whether interspecific hybridization is important as a mechanism that generates biological diversity is a matter of controversy. Whereas some authors focus on the potential of hybridization as a source of genetic variation, functional novelty and new species, others argue against any important role, because reduced fitness would typically render hybrids an evolutionary dead end. By drawing on recent developments in the genetics and ecology of hybridization and on principles of ecological speciation theory, I develop a concept that reconciles these views and adds a new twist to this debate. Because hybridization is common when populations invade new environments and potentially elevates rates of response to selection, it predisposes colonizing populations to rapid adaptive diversification under disruptive or divergent selection. I discuss predictions and suggest tests of this hybrid swarm theory of adaptive radiation and review published molecular phylogenies of adaptive radiations in light of the theory. Some of the confusion about the role of hybridization in evolutionary diversification stems from the contradiction between a perceived necessity for cessation of gene flow to enable adaptive population differentiation on the one hand [1], and the potential of hybridization for generating adaptive variation, functional novelty and new species 2, 3 and 4 on the other. Much progress in the genetics 5, 6, 7, 8 and 9 and ecology of hybridization 9, 10 and 11, and in our understanding of the role of ecology in speciation (see Glossary) 12, 13 and 14 make a re-evaluation timely. Whereas botanists traditionally stressed the diversity-generating potential of hybridization 2, 3 and 14, zoologists traditionally saw it as a process that limits diversification [1] and refer to it mainly in the contexts of hybrid zones (Box 1) and reinforcement of reproductive isolation [15]. Judging by the wide distribution of allopolyploidy among plants, many plant species might be of direct hybrid origin or descended from a hybrid species in the recent past [16]. The ability to reproduce asexually might explain why allopolyploid hybrid species are more common in plants than in animals. Allopolyploidy arises when meiotic mismatch of parental chromosomes or karyotypes causes hybrid sterility. Mitotic error, duplicating the karyotype, can restore an asexually maintained hybrid line to fertility. Although bisexual allopolyploid hybrid species are not uncommon in fish [17] and frogs [18], the difficulty with which allopolyploid animals reproduce, typically requiring gynogenesis[19], makes establishment and survival of allopolyploid animal species difficult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specialization to nectarivory is associated with radiations within different bird groups, including parrots. One of them, the Australasian lories, were shown to be unexpectedly species rich. Their shift to nectarivory may have created an ecological opportunity promoting species proliferation. Several morphological specializations of the feeding tract to nectarivory have been described for parrots. However, they have never been assessed in a quantitative framework considering phylogenetic nonindependence. Using a phylogenetic comparative approach with broad taxon sampling and 15 continuous characters of the digestive tract, we demonstrate that nectarivorous parrots differ in several traits from the remaining parrots. These trait-changes indicate phenotype–environment correlations and parallel evolution, and may reflect adaptations to feed effectively on nectar. Moreover, the diet shift was associated with significant trait shifts at the base of the radiation of the lories, as shown by an alternative statistical approach. Their diet shift might be considered as an evolutionary key innovation which promoted significant non-adaptive lineage diversification through allopatric partitioning of the same new niche. The lack of increased rates of cladogenesis in other nectarivorous parrots indicates that evolutionary innovations need not be associated one-to-one with diversification events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas's disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

African cichlid fishes have undergone outbursts of explosive speciation in several lakes, accompanied by rapid radiations in coloration and ecology. Little is known about the evolutionary forces that triggered these events but a hypothesis, published by Wallace Dominey in 1984, has figured prominently. It states that the evolution of colour patterns is driven by sexual selection and that these colour patterns are important in interspecific mate choice, a combination which holds the potential for rapid speciation. Here we present phylogenetic analyses that describe major events in colour evolution and test predictions yielded by Dominey's hypothesis. We assembled information on stripe patterns and the presence or absence of nuptial coloration from more than 700 cichlid species representing more than 90 taxa for which molecular phylogenetic hypotheses were available. We show that sexual selection is most likely the selection force that made male nuptial coloration arise and evolve quickly. In contrast, stripe patterns, though phylogenetically not conserved either, are constrained ecologically. The evolution of vertical bar patterns is associated with structurally complex habitats, such as rocky substrates or vegetation. The evolution of a horizontal stripe is associated with a piscivorous feeding mode. Horizontal stripes are also associated with shoaling behaviour. Strength of sexual selection, measured in terms of the mating system (weak in monogamous, strong in promiscuous species), has no detectable effects on stripe pattern evolution. In promiscuous species the frequency of difference between sister species in nuptial hue is higher than in pair bonding and harem forming species, but the frequency of difference in stripe pattern is lower. We argue that differences between the two components of coloration in their exposure to natural selection explain their very different evolutionary behaviour. Finally, we suggest that habitat-mediated selection upon chromomotor flexibility, a special form of phenotypic plasticity found in the river-dwelling outgroups of the lake-dwelling cichlids, explains the rapid and recurrent ecology-associated radiation of stripe patterns in lake environments, a new hypothesis that yields experimentally testable predictions.