2 resultados para Ecology Evolution and Organismal Biology

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear weak interaction rates, including electron and positron emission rates, and continuum electron and positron capture rates , as well as the associated v and –/v energy loss rates are calculated on a detailed grid of temperature and density for the free nucleons and 226 nuclei with masses between A = 21 and 60. Gamow-Teller and Fermi discrete-state transition matrix element systematics and the Gamow-Teller T^< →/← T^> resonance transitions are discussed in depth and are implemented in the stellar rate calculations. Results of the calculations are presented on an abbreviated grid of temperature and density and comparison is made to terrestrial weak transition rates where possible. Neutron shell blocking of allowed electron capture on heavy nuclei during stellar core collapse is discussed along with several unblocking mechanisms operative at high temperature and density. The results of one-zone collapse calculations are presented which suggest that the effect of neutron shell blocking is to produce a larger core lepton fraction at neutrino trapping which leads to a larger inner-core mass and hence a stronger post-bounce shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the greatest challenges in science lies in disentangling causality in complex, coupled systems. This is illustrated no better than in the dynamic interplay between the Earth and life. The early evolution and diversification of animals occurred within a backdrop of global change, yet reconstructing the potential role of the environment in this evolutionary transition is challenging. In the 200 million years from the end-Cryogenian to the Ordovician, enigmatic Ediacaran fauna explored body plans, animals diversified and began to biomineralize, forever changing the ocean's chemical cycles, and the biological community in shallow marine ecosystems transitioned from a microbial one to an animal one.

In the following dissertation, a multi-faceted approach combining macro- and micro-scale analyses is presented that draws on the sedimentology, geochemistry and paleontology of the rocks that span this transition to better constrain the potential environmental changes during this interval.

In Chapter 1, the potential of clumped isotope thermometry in deep time is explored by assessing the importance of burial and diagenesis on the thermometer. Eocene- to Precambrian-aged carbonates from the Sultanate of Oman were analyzed from current burial depths of 350-5850 meters. Two end-member styles of diagenesis independent of burial depth were observed.

Chapters 2, 3 and 4 explore the fallibility of the Ediacaran carbon isotope record and aspects of the sedimentology and geochemistry of the rocks preserving the largest negative carbon isotope excursion on record---the Shuram Excursion. Chapter 2 documents the importance of temperature, fluid composition and mineralogy on the delta 18-O min record and interrogates the bulk trace metal signal. Chapter 3 explores the spatial variability in delta 13-C recorded in the transgressive Johnnie Oolite and finds a north-to-south trend recording the onset of the excursion. Chapter 4 investigates the nature of seafloor precipitation during this excursion and more broadly. We document the potential importance of microbial respiratory reactions on the carbonate chemistry of the sediment-water interface through time.

Chapter 5 investigates the latest Precambrian sedimentary record in carbonates from the Sultanate of Oman, including how delta 13-C and delta 34-S CAS vary across depositional and depth gradients. A new model for the correlation of the Buah and Ara formations across Oman is presented. Isotopic results indicate delta 13-C varies with relative eustatic change and delta 34-S CAS may vary in absolute magnitude across Oman.

Chapter 6 investigates the secular rise in delta 18-Omin in the early Paleozoic by using clumped isotope geochemistry on calcitic and phosphatic fossils from the Cambrian and Ordovician. Results do not indicate extreme delta 18-O seawater depletion and instead suggest warmer equatorial temperatures across the early Paleozoic.