42 resultados para Conformal array
Resumo:
We investigate the 2-d O(3) model with a q-term as a toy model for slowly walking 4-d non-Abelian gauge theories. Using the very efficient meron-cluster algorithm, an accurate investigation of the scale dependence of the renormalized coupling is carried out for different values of the vacuum angle q. Approaching q = p, the infrared dynamics of the 2-d O(3) model is determined by a non-trivial conformal fixed point. We provide evidence for a slowly walking behavior near the fixed point and we perform a finite-size scaling analysis of the mass gap.
Resumo:
We assessed the efficacy and the toxicity for pediatric craniopharyngioma patients of fractionated stereotactic radiotherapy (FSRT). Between May 2000 and May 2009, 9 patients (male to female ratio, 5:4) with craniopharyngiomas underwent FSRT (median dose, 54 Gy). Among the 9 patients, 6 received radiation therapy (RT) for recurrent tumors and 3 for residual disease as adjuvant therapy after incomplete surgery. Median tumor 3 volume was 2.3 cm (range, 0.1-5.8). The median target coverage was 93.7% (range 79.3-99.8%). The median conformity index was 0.94 (range, 0.6-1.4). Dose to the hippocampal region was assessed for all patients. After a median follow-up of 62.5 months (range, 32-127)the treated volume decreased in size in four of eight patients (50%). One patient was lost to follow-up. Local control and survival rates at 3 years were 100% and there were no marginal relapses. One patient, with a chronic bilateral papillary oedema after surgery, visual defect deteriorated after FSRT to a complete hemianopsia. One male patient with normal pituitary function before FSRT presented with precocious puberty at the age of 7.4 years, 24 months after FSRT. Four patients (50%) were severely obese at their last visit. FSRT is a safe treatment option for craniopharyngioma after incomplete resection.
Resumo:
We present a conceptual prototype model of a focal plane array unit for the STEAMR instrument, highlighting the challenges presented by the required high relative beam proximity of the instrument and focus on how edge-diffraction effects contribute to the array's performance. The analysis was carried out as a comparative process using both PO & PTD and MoM techniques. We first highlight general differences between these computational techniques, with the discussion focusing on diffractive edge effects for near-field imaging reflectors with high truncation. We then present the results of in-depth modeling analyses of the STEAMR focal plane array followed by near-field antenna measurements of a breadboard model of the array. The results of these near-field measurements agree well with both simulation techniques although MoM shows slightly higher complex beam coupling to the measurements than PO & PTD.
Resumo:
In this paper, we present a novel technique for the removal of astigmatism in submillimeter-wave optical systems through employment of a specific combination of so-called astigmatic off-axis reflectors. This technique treats an orthogonally astigmatic beam using skew Gaussian beam analysis, from which an anastigmatic imaging network is derived. The resultant beam is considered truly stigmatic, with all Gaussian beam parameters in the orthogonal directions being matched. This is thus considered an improvement over previous techniques wherein a beam corrected for astigmatism has only the orthogonal beam amplitude radii matched, with phase shift and phase radius of curvature not considered. This technique is computationally efficient, negating the requirement for computationally intensive numerical analysis of shaped reflector surfaces. The required optical surfaces are also relatively simple to implement compared to such numerically optimized shaped surfaces. This technique is implemented in this work as part of the complete optics train for the STEAMR antenna. The STEAMR instrument is envisaged as a mutli-beam limb sounding instrument operating at submillimeter wavelengths. The antenna optics arrangement for this instrument uses multiple off-axis reflectors to control the incident radiation and couple them to their corresponding receiver feeds. An anastigmatic imaging network is successfully implemented into an optical model of this antenna, and the resultant design ensures optimal imaging of the beams to the corresponding feed horns. This example also addresses the challenges of imaging in multi-beam antenna systems.
Resumo:
For clinical optoacoustic imaging, linear probes are preferably used because they allow versatile imaging of the human body with real-time display and free-hand probe guidance. The two-dimensional (2-D) optoacoustic image obtained with this type of probe is generally interpreted as a 2-D cross-section of the tissue just as is common in echo ultrasound. We demonstrate in three-dimensional simulations, phantom experiments, and in vivo mouse experiments that for vascular imaging this interpretation is often inaccurate. The cylindrical blood vessels emit anisotropic acoustic transients, which can be sensitively detected only if the direction of acoustic radiation coincides with the probe aperture. Our results reveal for this reason that the signal amplitude of different blood vessels may differ even if the vessels have the same diameter and initial pressure distribution but different orientation relative to the imaging plane. This has important implications for the image interpretation, for the probe guidance technique, and especially in cases when a quantitative reconstruction of the optical tissue properties is required.
Resumo:
A CE system featuring an array of 16 contactless conductivity detectors was constructed. The detectors were arranged along 70 cm length of a capillary with 100 cm total length and allow the monitoring of separation processes. As the detectors cannot be accommodated on a conventional commercial instrument, a purpose built set-up employing a sequential injection manifold had to be employed for automation of the fluid handling. Conductivity measurements can be considered universal for electrophoresis and thus any changes in ionic composition can be monitored. The progress of the separation of Na(+) and K(+) is demonstrated. The potential of the system to the study of processes in CZE is shown in two examples. The first demonstrates the differences in the developments of peaks originating from a sample plug with a purely aqueous background to that of a plug containing the analyte ions in the buffer. The second example visualizes the opposite migration of cations and anions from a sample plug that had been placed in the middle of the capillary.
Resumo:
We consider the Schrödinger equation for a relativistic point particle in an external one-dimensional δ-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudodifferential operator H=p2+m2−−−−−−−√. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point. Thus it can be used to illustrate nontrivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.
Resumo:
We report about a lung-on-chip array that mimics the pulmonary parenchymal environment, including the thin, alveolar barrier and the three-dimensional cyclic strain induced by the breathing movements. A micro-diaphragm used to stretch the alveolar barrier is inspired by the in-vivo diaphragm, the main muscle responsible for inspiration. The design of this device aims not only at best reproducing the in-vivo conditions found in the lung parenchyma, but also at making its handling easy and robust. An innovative concept, based on the reversible bonding of the device, is presented that enables to accurately control the concentration of cells cultured on the membrane by easily accessing both sides of the membranes. The functionality of the alveolar barrier could be restored by co-culturing epithelial and endothelial cells that formed tight monolayers on each side of a thin, porous and stretchable membrane. We showed that cyclic stretch significantly affects the permeability properties of epithelial cell layers. Furthermore, we could also demonstrate that the strain influences the metabolic activity and the cytokine secretion of primary human pulmonary alveolar epithelial cells obtained from patients. These results demonstrate the potential of this device and confirm the importance of the mechanical strain induced by the breathing in pulmonary research.
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.
Resumo:
HYPOTHESIS To evaluate the feasibility and the results of insertion of two types of electrode arrays in a robotically assisted surgical approach. BACKGROUND Recent publications demonstrated that robot-assisted surgery allows the implantation of free-fitting electrode arrays through a cochleostomy drilled via a narrow bony tunnel (DCA). We investigated if electrode arrays from different manufacturers could be used with this approach. METHODS Cone-beam CT imaging was performed on fivecadaveric heads after placement of fiducial screws. Relevant anatomical structures were segmented and the DCA trajectory, including the position of the cochleostomy, was defined to target the center of the scala tympani while reducing the risk of lesions to the facial nerve. Med-El Flex 28 and Cochlear CI422 electrodes were implanted on both sides, and their position was verified by cone-beam CT. Finally, temporal bones were dissected to assess the occurrence of damage to anatomical structures during DCA drilling. RESULTS The cochleostomy site was directed in the scala tympani in 9 of 10 cases. The insertion of electrode arrays was successful in 19 of 20 attempts. No facial nerve damage was observed. The average difference between the planned and the postoperative trajectory was 0.17 ± 0.19 mm at the level of the facial nerve. The average depth of insertion was 305.5 ± 55.2 and 243 ± 32.1 degrees with Med-El and Cochlear arrays, respectively. CONCLUSIONS Robot-assisted surgery is a reliable tool to allow cochlear implantation through a cochleostomy. Technical solutions must be developed to improve the electrode array insertion using this approach.
Resumo:
Via large and small N c relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N c is less than about six. Nevertheless useful nonper-turbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N c two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N c) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU(N c) with two and four symmetric Dirac flavors.