59 resultados para Configuration spaces
Resumo:
This article develops the concept of “Functional Regulatory Space” (FRS) in order to analyze the new forms of State action addressing (super) wicked problems. A FRS simultaneously spans several policy sectors, institutional territories and levels of government. It suggests integrating previous policy theories that focused on “boundary-spanning regime,” “territorial institutionalism” or multi-level governance. The FRS concept is envisaged as a Weberian “ideal-type” of State action and is applied to the empirical study of two European cases of potential FRS: the integrated management of water basins and the regulation of the European sky through functional airspace blocks. It will be concluded that the current airspace regulation does match the ideal-type of FRS any better than the water resource regulation does. The next research step consists in analyzing the genesis and institutionalization of potential FRS addressing other (super) wicked problems such as climate change and economic, security, health and immigration issues in different institutional contexts as well as at various levels of governance.
Resumo:
We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
Resumo:
The aim of this study was to evaluate the ability of dual energy X-rays absorptiometry (DXA) areal bone mineral density (aBMD) measured in different regions of the proximal part of the human femur for predicting the mechanical properties of matched proximal femora tested in two different loading configurations. 36 pairs of fresh frozen femora were DXA scanned and tested until failure in two loading configurations: a fall on the side or a one-legged standing. The ability of the DXA output from four different regions of the proximal femur in predicting the femoral mechanical properties was measured and compared for the two loading scenarios. The femoral neck DXA BMD was best correlated to the femoral ultimate force for both configurations and predicted significantly better femoral failure load (R2=0.80 vs. R2=0.66, P<0.05) when simulating a side than when simulating a standing configuration. Conversely, the work to failure was predicted similarly for both loading configurations (R2=0.54 vs. R2=0.53, P>0.05). Therefore, neck BMD should be considered as one of the key factors for discriminating femoral fracture risk in vivo. Moreover, the better predictive ability of neck BMD for femoral strength if tested in a fall compared to a one-legged stance configuration suggests that DXA's clinical relevance may not be as high for spontaneous femoral fractures than for fractures associated to a fall.
Resumo:
This paper introduces a novel vision for further enhanced Internet of Things services. Based on a variety of data (such as location data, ontology-backed search queries, in- and outdoor conditions) the Prometheus framework is intended to support users with helpful recommendations and information preceding a search for context-aware data. Adapted from artificial intelligence concepts, Prometheus proposes user-readjusted answers on umpteen conditions. A number of potential Prometheus framework applications are illustrated. Added value and possible future studies are discussed in the conclusion.
Resumo:
The chronology and configuration of the Svalbard Barents Sea Ice Sheet (SBSIS) during the Late Weichselian (LW) are based on few and geographically scattered data. Thus, the timing and configuration of the SBSIS has been a subject of extensive debate. We present provenance data of erratic boulders and cosmogenic 10Be ages of bedrock and boulders from Northwest Spitsbergen (NWS), Svalbard to determine the thickness, configuration and chronology during the LW. We sampled bedrock and boulders of mountain summits and summit slopes, along with erratic boulders from coastal locations around NWS. We suggest that a local ice dome over central NWS during LW drained radially in all directions. Provenance data from erratic boulders from northern coastal lowland Reinsdyrflya suggest northeastward ice flow through Liefdefjorden. 10Be ages of high-elevation erratic boulders in central NWS (687–836 m above sea level) ranging from 18.3 ± 1.3 ka to 21.7 ± 1.4 ka, indicate that the centre of a local ice dome was at least 300 m thicker than at present. 10Be ages of all high-elevation erratics (>400 m above sea level, central and coastal locations) indicate the onset of ice dome thinning at 25–20 ka. 10Be ages from erratic boulders on Reinsdyrflya ranging from 11.1 ± 0.8 ka to 21.4 ± 1.7 ka, indicate an ice cover over the entire Reinsdyrflya during LW and a complete deglaciation prior to the Holocene, but apparently later than the thinning in the mountains. Lack of moraine deposits, but the preservation of beach terraces, suggest that the ice covering this peninsula possibly was cold-based and that Reinsdyrflya was part of an inter ice-stream area covered by slow-flowing ice, as opposed to the adjacent fjord, which possibly was filled by a fast-flowing ice stream. Despite the early thinning of the ice sheet (25–20 ka) we find a later timing of deglaciation of the fjords and the distal lowlands. Several bedrock samples (10Be) from vertical transects in the central mountains of NWS pre-date the LW, and suggest either ice free or pervasive cold-based ice conditions. Our reconstruction is aligned with the previously suggested hypothesis that a complex multi-dome ice-sheet-configuration occupied Svalbard and the Barents Sea during LW, with numerous drainage basins feeding fast ice streams, separated by slow flowing, possibly cold-based, inter ice-stream areas.