33 resultados para Colonização nasal
Resumo:
BACKGROUND AND OBJECTIVE Rhinoviruses (RV) replicate in both upper and lower airway epithelial cells. We evaluated the possibility of using nasal epithelial cells (NEC) as surrogate of bronchial epithelial cells (BEC) for RV pathogenesis cell culture studies. METHODS We used primary paired NEC and BEC cultures established from healthy subjects and compared the replication of RV belonging to the major (RV16) and minor (RV1B) group, and the cellular antiviral and proinflammatory cytokine responses towards these viruses. We related antiviral and pro-inflammatory responses of NEC isolated from CF and COPD patients with those of BEC. RESULTS RV16 replication and major group surface receptor (ICAM-1) expression were higher in healthy NEC compared with BEC (P < 0.05); RV1B replication and minor group surface receptor (LDLR) expression were similar. Healthy NEC and BEC produced similar levels of IFN-β and IFN-λ2/3 upon RV infection or after simulation with poly(IC). IL-8 production was similar between healthy NEC and BEC. IL-6 release at baseline (P < 0.01) and upon infection with RV16 (P < 0.05) and poly(IC) stimulation (P < 0.05) was higher in NEC. RV1B viral load in NEC was related to RV1B viral load in BEC (r = 0.49, P = 0.01). There was a good correlation of IFN levels between NEC and BEC (r = 0.66, P = 0.0004 after RV1B infection). IL-8 production in NEC was related to IL-8 production in BEC (r = 0.48, P = 0.02 after RV1B infection). CONCLUSION NEC are a suitable alternative cellular system to BEC to study the pathophysiology of RV infections and particularly to investigate IFN responses induced by RV infection.
Resumo:
BACKGROUND Respiratory tract infections and subsequent airway inflammation occur early in the life of infants with cystic fibrosis. However, detailed information about the microbial composition of the respiratory tract in infants with this disorder is scarce. We aimed to undertake longitudinal in-depth characterisation of the upper respiratory tract microbiota in infants with cystic fibrosis during the first year of life. METHODS We did this prospective cohort study at seven cystic fibrosis centres in Switzerland. Between Feb 1, 2011, and May 31, 2014, we enrolled 30 infants with a diagnosis of cystic fibrosis. Microbiota characterisation was done with 16S rRNA gene pyrosequencing and oligotyping of nasal swabs collected every 2 weeks from the infants with cystic fibrosis. We compared these data with data for an age-matched cohort of 47 healthy infants. We additionally investigated the effect of antibiotic treatment on the microbiota of infants with cystic fibrosis. Statistical methods included regression analyses with a multivariable multilevel linear model with random effects to correct for clustering on the individual level. FINDINGS We analysed 461 nasal swabs taken from the infants with cystic fibrosis; the cohort of healthy infants comprised 872 samples. The microbiota of infants with cystic fibrosis differed compositionally from that of healthy infants (p=0·001). This difference was also found in exclusively antibiotic-naive samples (p=0·001). The disordering was mainly, but not solely, due to an overall increase in the mean relative abundance of Staphylococcaceae in infants with cystic fibrosis compared with healthy infants (multivariable linear regression model stratified by age and adjusted for season; second month: coefficient 16·2 [95% CI 0·6-31·9]; p=0·04; third month: 17·9 [3·3-32·5]; p=0·02; fourth month: 21·1 [7·8-34·3]; p=0·002). Oligotyping analysis enabled differentiation between Staphylococcus aureus and coagulase-negative Staphylococci. Whereas the analysis showed a decrease in S aureus at and after antibiotic treatment, coagulase-negative Staphylococci increased. INTERPRETATION Our study describes compositional differences in the microbiota of infants with cystic fibrosis compared with healthy controls, and disordering of the microbiota on antibiotic administration. Besides S aureus, coagulase-negative Staphylococci also contributed to the disordering identified in these infants. These findings are clinically important in view of the crucial role that bacterial pathogens have in the disease progression of cystic fibrosis in early life. Our findings could be used to inform future studies of the effect of antibiotic treatment on the microbiota in infants with cystic fibrosis, and could assist in the prevention of early disease progression in infants with this disorder. FUNDING Swiss National Science Foundation, Fondation Botnar, the Swiss Society for Cystic Fibrosis, and the Swiss Lung Association Bern.
Resumo:
Nasal spray from lemon and quince (LQNS) is used to treat hay fever symptoms and has been shown to inhibit histamine release from mast cells in vitro. Forty-three patients with grass pollen allergy (GPA) were randomized to be treated either with placebo or LQNS for one week, respectively, in a cross-over study. At baseline and after the respective treatments patients were provoked with grass pollen allergen. Outcome parameters were nasal flow measured with rhinomanometry (primary), a nasal symptom score, histamine in the nasal mucus and tolerability. In the per protocol population absolute inspiratory nasal flow 10 and 20 min after provocation was higher with LQNS compared to placebo (-37 ± 87 mL/s; p = 0.027 and -44 ± 85 mL/s; p = 0.022). The nasal symptom score showed a trend (3.3 ± 1.8 in the placebo and 2.8 ± 1.5 in the LQNS group; p = 0.070) in favor of LQNS; the histamine concentration was not significantly different between the groups. Tolerability of both, LQNS and placebo, was rated as very good. LQNS seems to have an anti-allergic effect in patients with GPA. Copyright © 2016 John Wiley & Sons, Ltd.