53 resultados para Cell Membrane


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neospora caninum represents an important pathogen causing stillbirth and abortion in cattle and neuromuscular disease in dogs. Nitazoxanide (NTZ) and its deacetylated metabolite tizoxanide (TIZ) are nitro-thiazolyl-salicylamide drugs with a broad-spectrum anti-parasitic activity in vitro and in vivo. In order to generate compounds potentially applicable in food and breeding animals, the nitro group was removed, and the thiazole-moiety was modified by other functional groups. We had shown earlier that replacement of the nitro-group by a bromo-moiety did not notably affect in vitro efficacy of the drugs against N. caninum. In this study we report on the characterization of two bromo-derivatives, namely Rm4822 and its de-acetylated putative metabolite Rm4847 in relation to the nitro-compounds NTZ and TIZ. IC(50) values for proliferation inhibition were 4.23 and 4.14 microM for NTZ and TIZ, and 14.75 and 13.68 microM for Rm4822 and Rm4847, respectively. Complete inhibition (IC(99)) was achieved at 19.52 and 22.38 microM for NTZ and TIZ, and 18.21 and 17.66 microM for Rm4822 and Rm4847, respectively. However, in order to exert a true parasiticidal effect in vitro, continuous culture of infected fibroblasts in the presence of the bromo-thiazolide Rm4847 was required for a period of 3 days, while the nitro-compound TIZ required 5 days continuous drug exposure. Both thiazolides induced rapid egress of N. caninum tachyzoites from their host cells, and egress was inhibited by the cell membrane permeable Ca(2+)-chelator BAPTA-AM. Host cell entry by N. caninum tachyzoites was inhibited by Rm4847 but not by TIZ. Upon release from their host cells, TIZ-treated parasites remained associated with the fibroblast monolayer, re-invaded neighboring host cells and resumed proliferation in the absence of the drug. In contrast, Rm4847 inhibited host cell invasion and respective treated tachyzoites did not proliferate further. This demonstrated that bromo- and nitro-thiazolides exhibit differential effects against the intracellular protozoan N. caninum and bromo-thiazolides could represent a valuable alternative to the nitro-thiazolyl-salicylamide drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stress proteins represent a group of highly conserved intracellular proteins that provide adaptation against cellular stress. The present study aims to elucidate the stress protein-mediated effects of local hyperthermia and systemic administration of monophosphoryl lipid A (MPL) on oxygenation, metabolism and survival in bilateral porcine random pattern buttock flaps. Preconditioning was achieved 24h prior to surgery by applying a heating blanket on the operative site (n = 5), by intravenous administration of MPL at a dosage of 35 microg/kg body weight (n = 5) or by combining the two (n = 5). The flaps were monitored with laser Doppler flowmetry, polarographic microprobes and microdialysis until 5h postoperatively. Semiquantitative immunohistochemistry was performed for heat shock protein 70 (HSP70), heat shock protein 32 (also termed haem oxygenase-1, HO-1), and inducible nitrc oxide synthase (iNOS). The administration of MPL increased the impaired microcirculatory blood flow in the proximal part of the flap and partial oxygen tension in the the distal part by approximately 100% each (both P<0.05), whereas both variables remained virtually unaffected by local heat preconditioning. Lactate/pyruvate (L/P) ratio and glycerol concentration (representing cell membrane disintegration) in the distal part of the flap gradually increased to values of approximately 500 mmol/l and approximately 350 micromol/l, respectively (both P<0.01), which was substantially attenuated by heat application (P<0.01 for L/P ratio and P<0.05 for glycerol) and combined preconditioning (P<0.01 for both variables), whereas the effect of MPL was less marked (not significant). Flap survival was increased from 56% (untreated animals) to 65% after MPL (not significant), 71% after heat application (P<0.05) and 78% after both methods of preconditioning (P<0.01). iNOS and HO-1 were upregulated after each method of preconditioning (P<0.05), whereas augmented HSP70 staining was only observed after heat application (P<0.05). We conclude that local hyperthermia is more effective in preventing flap necrosis than systemic MPL administration because of enhancing the cellular tolerance to hypoxic stress, which is possibly mediated by HSP70, whereas some benefit may be obtained with MPL due to iNOS and HO-1-mediated improvement in tissue oxygenation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECT: Glycerol is considered to be a marker of cell membrane degradation and thus cellular lysis. Recently, it has become feasible to measure via microdialysis cerebral extracellular fluid (ECF) glycerol concentrations at the patient's bedside. Therefore the aim of this study was to investigate the ECF concentration and time course of glycerol after severe traumatic brain injury (TBI) and its relationship to patient outcome and other monitoring parameters. METHODS: As soon as possible after injury for up to 4 days, 76 severely head-injured patients were monitored using a microdialysis probe (cerebral glycerol) and a Neurotrend sensor (brain tissue PO2) in uninjured brain tissue confirmed by computerized tomography scanning. The mean brain tissue glycerol concentration in all monitored patients decreased significantly from 206 +/- 31 micromol/L on Day 1 to 9 +/- 3 micromol/L on Day 4 after injury (p < 0.0001). Note, however, that there was no significant difference in the time course between patients with a favorable outcome (Glasgow Outcome Scale [GOS] Scores 4 and 5) and those with an unfavorable outcome (GOS Scores 1-3). Significantly increased glycerol concentrations were observed when brain tissue PO2 was less than 10 mm Hg or when cerebral perfusion pressure was less than 70 mm Hg. CONCLUSIONS: Based on results in the present study one can infer that microdialysate glycerol is a marker of severe tissue damage, as seen immediately after brain injury or during profound tissue hypoxia. Given that brain tissue glycerol levels do not yet add new clinically significant information, however, routine monitoring of this parameter following traumatic brain injury needs further validation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma microparticles (MPs, <1.5 mum) originate from platelet and cell membrane lipid rafts and possibly regulate inflammatory responses and thrombogenesis. These actions are mediated through their phospholipid-rich surfaces and associated cell-derived surface molecules. The ectonucleotidase CD39/ecto-nucleoside triphosphate diphosphohydrolase1 (E-NTPDase1) modulates purinergic signalling through pericellular ATP and ADP phosphohydrolysis and is localized within lipid rafts in the membranes of endothelial- and immune cells. This study aimed to determine whether CD39 associates with circulating MPs and might further impact phenotype and function. Plasma MPs were found to express CD39 and exhibited classic E-NTPDase ecto-enzymatic activity. Entpd1 (Cd39) deletion in mice produced a pro-inflammatory phenotype associated with quantitative and qualitative differences in the MP populations, as determined by two dimensional-gel electrophoresis, western blot and flow cytometry. Entpd1-null MPs were also more abundant, had significantly higher proportions of platelet- and endothelial-derived elements and decreased levels of interleukin-10, tumour necrosis factor receptor 1 and matrix metalloproteinase 2. Consequently, Cd39-null MP augment endothelial activation, as determined by inflammatory cytokine release and upregulation of adhesion molecules in vitro. In conclusion, CD39 associates with circulating MP and may directly or indirectly confer functional properties. Our data also suggest a modulatory role for CD39 within MP in the exchange of regulatory signals between leucocytes and vascular cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monocarboxylate transporter 8 (MCT8 or SLC16A2) is important for the neuronal uptake of triiodothyronine (T3) in its function as a specific and active transporter of thyroid hormones across the cell membrane, thus being essential for human brain development. We report on a German male with Allan-Herndon-Dudley syndrome presenting with severe intellectual and motor disability, paroxysmal dyskinesia combined with truncal muscular hypotonia, and peripheral muscular hypertonia at his current age of 9 years. Additionally, the patient has a lesion in the left putamen region revealed by magnetic resonance imaging and elevated serum T3 levels. The male appeared to have a hemizygous mutation (R271H) in the MCT8 gene that was sequenced directly from genomic DNA and occurred de novo in the maternal germline, as both his mother and his sister were not carriers of the mutation. Ruling out a common polymorphism, 50 normal individuals of the same ethnic background did not harbour the mutation. The identified MCT8 gene mutation (R271H) is very likely to be the genetic cause for neuronal hypothyroidism despite elevated serum T3 levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lipoprotein LppQ is the most prominent antigen of Mycoplasma mycoides subsp. mycoides small colony type (SC) during infection of cattle. This pathogen causes contagious bovine pleuropneumonia (CBPP), a devastating disease of considerable socio-economic importance in many countries worldwide. The dominant antigenicity and high specificity for M. mycoides subsp. mycoides SC of lipoprotein LppQ have been exploited for serological diagnosis and for epidemiological investigations of CBPP. Scanning electron microscopy and immunogold labelling were used to provide ultrastructural evidence that LppQ is located to the cell membrane at the outer surface of M. mycoides subsp. mycoides SC. The selectivity and specificity of this method were demonstrated through discriminating localization of extracellular (i.e., in the zone of contact with host cells) vs. integral membrane domains of LppQ. Thus, our findings support the suggestion that the accessible N-terminal domain of LppQ is surface exposed and such surface localization may be implicated in the pathogenesis of CBPP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND CONTEXT Proteolytic enzyme digestion of the intervertebral disc (IVD) offers a method to simulate a condition of disc degeneration for the study of cell-scaffold constructs in the degenerated disc. PURPOSE To characterize an in vitro disc degeneration model (DDM) of different severities of glycosaminoglycans (GAG) and water loss by using papain, and to determine the initial response of the human mesenchymal stem cells (MSCs) introduced into this DDM. STUDY DESIGN Disc degeneration model of a bovine disc explant with an end plate was induced by the injection of papain at various concentrations. Labeled MSCs were later introduced in this model. METHODS Phosphate-buffered saline (PBS control) or papain in various concentrations (3, 15, 30, 60, and 150 U/mL) were injected into the bovine caudal IVD explants. Ten days after the injection, GAG content of the discs was evaluated by dimethylmethylene blue assay and cell viability was determined by live/dead staining together with confocal microscopy. Overall matrix composition was evaluated by histology, and water content was visualized by magnetic resonance imaging. Compressive and torsional stiffness of the DDM were also recorded. In the second part, MSCs were labeled with a fluorescence cell membrane tracker and injected into the nucleus of the DDM or a PBS control. Mesenchymal stem cell viability and distribution were evaluated by confocal microscopy. RESULTS A large drop of GAG and water content of the bovine disc were obtained by injecting >30 U/mL papain. Magnetic resonance imaging showed Grade II, III, and IV disc degeneration by injecting 30, 60, and 150 U/mL papain. A cavity in the center of the disc could facilitate later injection of the nucleus pulposus tissue engineering construct while retaining an intact annulus fibrosus. The remaining disc cell viability was not affected. Mesenchymal stem cells injected into the protease-treated DDM disc showed significantly higher cell viability than when injected into the PBS-injected control disc. CONCLUSIONS By varying the concentration of papain for injection, an increasing amount of GAG and water loss could be induced to simulate the different severities of disc degeneration. MSC suspension introduced into the disc has a very low short-term survival. However, it should be clear that this bovine IVD DDM does not reflect a clinical situation but offers exciting possibilities to test novel tissue engineering protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The flower gene has been previously linked to the elimination of slow dividing epithelial cells during development in a process known as "cell competition." During cell competition, different isoforms of the Flower protein are displayed at the cell membrane and reveal the reduced fitness of slow proliferating cells, which are therefore recognized, eliminated, and replaced by their normally dividing neighbors. This mechanism acts as a "cell quality" control in proliferating tissues. RESULTS: Here, we use the Drosophila eye as a model to study how unwanted neurons are culled during retina development and find that flower is required and sufficient for the recognition and elimination of supernumerary postmitotic neurons, contained within incomplete ommatidia units. This constitutes the first description of the "Flower Code" functioning as a cell selection mechanism in postmitotic cells and is also the first report of a physiological role for this cell quality control machinery. CONCLUSIONS: Our results show that the "Flower Code" is a general system to reveal cell fitness and that it may play similar roles in creating optimal neural networks in higher organisms. The Flower Code seems to be a more general mechanism for cell monitoring and selection than previously recognized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurotensin(8-13) (NTS(8-13)) analogs with C- and/or N-terminal β-amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1-6). A virtual docking experiment showed almost perfect fit of one of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives, 6a, into a crystallographically identified receptor NTSR1 (Fig.1). The affinities for the receptors of the NTS analogs and derivatives are low, when determined with cell-membrane homogenates, while, with NTSR1-exhibiting cancer tissues, affinities in the single-digit nanomolar range can be observed (Table 2). Most of the β-amino acid-containing NTS(8-13) analogs (Table 1 and Fig.2), including the (68) Ga complexes of the DOTA-substituted ones (6; Figs.2 and 5), are stable for ca. 1 h in human serum and plasma, and in murine plasma. The biodistributions of two (68) Ga complexes (of 6a and 6b) in HT29 tumor-bearing nude mice, in the absence and in the presence of a blocking compound, after 10, 30, and 60 min (Figs. 3 and 4) lead to the conclusion that the amount of specifically bound radioligand is rather low. This was confirmed by PET-imaging experiments with the tumor-bearing mice (Fig.6). Comparison of the in vitro plasma stability (after 1 h) with the ex vivo blood content (after 10-15 min) of the two (68) Ga complexes shows that they are rapidly cleaved in the animals (Fig.5).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cupiennins are small cationic a-helical peptides from the venom of the ctenid spider Cupiennius salei which are characterized by high bactericidal as well as hemolytic activities. To gain insight into the determinants responsible for the broad cytolytic activities, two analogues of cupiennin 1a with different N-terminal hydrophobicities were designed. The insecticidal, bactericidal and hemolytic activities of these analogues were assayed and compared to the native peptide. Specifically, substitution of two N-terminal Phe residues by Ala results in less pronounced insecticidal and cytolytic activity, whereas a substitution by Lys reduces strongly its bactericidal activity and completely diminishes its hemolytic activity up to very high tested concentrations. Biophysical analyses of peptide/bilayer membrane interactions point to distinct interactions of the analogues with lipid bilayers, and dependence upon membrane surface charge. Indeed, we find that lower hemolytic activity was correlated with less surface association of the analogues. In contrast, our data indicate that the reduced bactericidal activity of the two cupiennin 1a analogues likely correspond to greater bilayer-surface localization of the peptides. Overall, ultimate insertion and destruction of the host cell membrane is highly dependent on the presence of Phe-2 and Phe-6 (Cu 1a) or Leu-6 (Cu 2a) in the N-terminal sequences of native cupiennins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: The re sponse of crop plants ex posed on drought or heat shock is related to de crease in the synthesis of normal proteins, accompanied by increased translation of heat shock proteins (HSPs). Though drought and heat stress have been studied individually, little is known about their combined effect on plants. Methods: The wheat (Triticum aestivum L.) varieties (Katya-tolerant, Sadovo or Mladka-susceptible) were potted in soil. Eight-day-old plants were ex posed to with drawing water for seven days. Heat shock was realized in growth chamber at 40 °C for 6h. A combination of drought and heat shock was per formed by subjecting drought-stressed plants to heat shock treatment. Expression of HSPs in the first leaf of wheat varieties was analyzed by SDS electrophoresis and immunoblotting. Polyclonal antibodies against HSP20, HSP60, HSP110 and mononclonal antibodies against HSP70 were used to distinguish the mentioned HSPs. Results: The leaf relative water content (RWC), which indicated the level of plant dehydration decreased significantly (34 %) under drought stressed conditions The electrolyte leakage of ions (EL), representing the level of the cell membrane stability in creased mark edly (68 %), especially under combination of drought and heat. Maximum EL was ob served in drought susceptible varieties Sadovo and Mladka. Drought and heat shock combination in the wheat plants resulted in the induction of specific HSPs. Conclusions: Our results demonstrate that the response of the wheat plants to a combination of drought and heat stress is different from the response of plants to each of these stresses applied separately. Induction of synergetic effect on HSP expression in case of combination between drought and heat was discussed in the case of two contrasting wheat varieties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endocannabinoids are arachidonic acid-derived endogenous lipids that activate the endocannabinoid system which plays a major role in health and disease. The primary endocannabinoids are anandamide (AEA, N-arachidonoylethanolamine) and 2-arachidonoyl glycerol. While their biosynthesis and metabolism have been studied in detail, it remains unclear how endocannabinoids are transported across the cell membrane. In this review, we critically discuss the different models of endocannabinoid trafficking, focusing on AEA cellular uptake which is best studied. The evolution of the current knowledge obtained with different AEA transport inhibitors is reviewed and the confusions caused by the lack of their specificity discussed. A comparative summary of the most important AEA uptake inhibitors and the studies involving their use is provided. Based on a comprehensive literature analysis, we propose a model of facilitated AEA membrane transport followed by intracellular shuttling and sequestration. We conclude that novel and more specific probes will be essential to identify the missing targets involved in endocannabinoid membrane transport.