57 resultados para 004 - Informatik (Data processing Computer science)
Resumo:
Abstract Cloud computing service emerged as an essential component of the Enterprise {IT} infrastructure. Migration towards a full range and large-scale convergence of Cloud and network services has become the current trend for addressing requirements of the Cloud environment. Our approach takes the infrastructure as a service paradigm to build converged virtual infrastructures, which allow offering tailored performance and enable multi-tenancy over a common physical infrastructure. Thanks to virtualization, new exploitation activities of the physical infrastructures may arise for both transport network and Data Centres services. This approach makes network and Data Centres’ resources dedicated to Cloud Computing to converge on the same flexible and scalable level. The work presented here is based on the automation of the virtual infrastructure provisioning service. On top of the virtual infrastructures, a coordinated operation and control of the different resources is performed with the objective of automatically tailoring connectivity services to the Cloud service dynamics. Furthermore, in order to support elasticity of the Cloud services through the optical network, dynamic re-planning features have been provided to the virtual infrastructure service, which allows scaling up or down existing virtual infrastructures to optimize resource utilisation and dynamically adapt to users’ demands. Thus, the dynamic re-planning of the service becomes key component for the coordination of Cloud and optical network resource in an optimal way in terms of resource utilisation. The presented work is complemented with a use case of the virtual infrastructure service being adopted in a distributed Enterprise Information System, that scales up and down as a function of the application requests.
Resumo:
The Social Web offers increasingly simple ways to publish and disseminate personal or opinionated information, which can rapidly exhibit a disastrous influence on the online reputation of organizations. Based on social Web data, this study describes the building of an ontology based on fuzzy sets. At the end of a recurring harvesting of folksonomies by Web agents, the aggregated tags are purified, linked, and transformed to a so-called fuzzy grassroots ontology by means of a fuzzy clustering algorithm. This self-updating ontology is used for online reputation analysis, a crucial task of reputation management, with the goal to follow the online conversation going on around an organization to discover and monitor its reputation. In addition, an application of the Fuzzy Online Reputation Analysis (FORA) framework, lesson learned, and potential extensions are discussed in this article.
Resumo:
BACKGROUND: To investigate if non-rigid image-registration reduces motion artifacts in triggered and non-triggered diffusion tensor imaging (DTI) of native kidneys. A secondary aim was to determine, if improvements through registration allow for omitting respiratory-triggering. METHODS: Twenty volunteers underwent coronal DTI of the kidneys with nine b-values (10-700 s/mm2 ) at 3 Tesla. Image-registration was performed using a multimodal nonrigid registration algorithm. Data processing yielded the apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA). For comparison of the data stability, the root mean square error (RMSE) of the fitting and the standard deviations within the regions of interest (SDROI ) were evaluated. RESULTS: RMSEs decreased significantly after registration for triggered and also for non-triggered scans (P < 0.05). SDROI for ADC, FA, and FP were significantly lower after registration in both medulla and cortex of triggered scans (P < 0.01). Similarly the SDROI of FA and FP decreased significantly in non-triggered scans after registration (P < 0.05). RMSEs were significantly lower in triggered than in non-triggered scans, both with and without registration (P < 0.05). CONCLUSION: Respiratory motion correction by registration of individual echo-planar images leads to clearly reduced signal variations in renal DTI for both triggered and particularly non-triggered scans. Secondarily, the results suggest that respiratory-triggering still seems advantageous.J. Magn. Reson. Imaging 2014. (c) 2014 Wiley Periodicals, Inc.
Resumo:
In this paper, we describe dynamic unicast to increase communication efficiency in opportunistic Information-centric networks. The approach is based on broadcast requests to quickly find content and dynamically creating unicast links to content sources without the need of neighbor discovery. The links are kept temporarily as long as they deliver content and are quickly removed otherwise. Evaluations in mobile networks show that this approach maintains ICN flexibility to support seamless mobile communication and achieves up to 56.6% shorter transmission times compared to broadcast in case of multiple concurrent requesters. Apart from that, dynamic unicast unburdens listener nodes from processing unwanted content resulting in lower processing overhead and power consumption at these nodes. The approach can be easily included into existing ICN architectures using only available data structures.
Resumo:
Information-centric networking (ICN) has been proposed to cope with the drawbacks of the Internet Protocol, namely scalability and security. The majority of research efforts in ICN have focused on routing and caching in wired networks, while little attention has been paid to optimizing the communication and caching efficiency in wireless networks. In this work, we study the application of Raptor codes to Named Data Networking (NDN), which is a popular ICN architecture, in order to minimize the number of transmitted messages and accelerate content retrieval times. We propose RC-NDN, which is a NDN compatible Raptor codes architecture. In contrast to other coding-based NDN solutions that employ network codes, RC-NDN considers security architectures inherent to NDN. Moreover, different from existing network coding based solutions for NDN, RC-NDN does not require significant computational resources, which renders it appropriate for low cost networks. We evaluate RC-NDN in mobile scenarios with high mobility. Evaluations show that RC-NDN outperforms the original NDN significantly. RC-NDN is particularly efficient in dense environments, where retrieval times can be reduced by 83% and the number of Data transmissions by 84.5% compared to NDN.
Resumo:
Extraction of both pelvic and femoral surface models of a hip joint from CT data for computer-assisted pre-operative planning of hip arthroscopy is addressed. We present a method for a fully automatic image segmentation of a hip joint. Our method works by combining fast random forest (RF) regression based landmark detection, atlas-based segmentation, with articulated statistical shape model (aSSM) based hip joint reconstruction. The two fundamental contributions of our method are: (1) An improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the atlas-based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Validation on 30 hip CT images show that our method achieves high performance in segmenting pelvis, left proximal femur, and right proximal femur surfaces with an average accuracy of 0.59 mm, 0.62 mm, and 0.58 mm, respectively.
Resumo:
In this paper we propose a new fully-automatic method for localizing and segmenting 3D intervertebral discs from MR images, where the two problems are solved in a unified data-driven regression and classification framework. We estimate the output (image displacements for localization, or fg/bg labels for segmentation) of image points by exploiting both training data and geometric constraints simultaneously. The problem is formulated in a unified objective function which is then solved globally and efficiently. We validate our method on MR images of 25 patients. Taking manually labeled data as the ground truth, our method achieves a mean localization error of 1.3 mm, a mean Dice metric of 87%, and a mean surface distance of 1.3 mm. Our method can be applied to other localization and segmentation tasks.
Resumo:
Over the years, a drastic increase in online information disclosure spurs a wave of concerns from multiple stakeholders. Among others, users resent the “behind the closed doors” processing of their personal data by companies. Privacy policies are supposed to inform users how their personal information is handled by a website. However, several studies have shown that users rarely read privacy policies for various reasons, not least because limitedly readable policy texts are difficult to understand. Based on our online survey with over 440 responses, we examine the objective and subjective readability of privacy policies and investigate their impact on users’ trust in five big Internet services. Our findings show the stronger a user believes in having understood the privacy policy, the higher he or she trusts a web site across all companies we studied. Our results call for making readability of privacy policies more accessible to an average reader.