101 resultados para transcranial direct current stimulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cardiac muscle the amplitude of Ca(2+) transients can be increased by enhancing Ca(2+) influx. Among the processes leading to increased Ca(2+) influx, agonists of the L-type Ca(2+)-channel can play an important role. Known pharmacological Ca(2+)-channel agonists act on different binding sites on the channel protein, which may lead not only to enhanced peak currents, but also to distinct changes in other biophysical characteristics of the current. In this study, membrane currents were recorded with the patch-clamp technique in the whole-cell configuration in guinea pig isolated ventricular myocytes in combination with confocal fluorescence Ca(2+) imaging techniques and a variety of pharmacological tools. Testing a new positive inotropic steroid-like compound, we found that it increased the L-type Ca(2+)-current by 2.5-fold by shifting the voltage-dependence of activation by 20.2 mV towards negative potentials. The dose-response relationship revealed two vastly different affinities (EC(50(high-affinity))=4.5+/-1.7 nM, EC(50(low-affinity))=8.0+/-1.1 microM) exhibiting differential pharmacological interactions with three classes of Ca(2+)-current antagonists, suggesting more than one binding site on the channel protein. Therefore, we identified and characterized a novel positive inotropic compound (F90927) as a member of a new class of Ca(2+)-channel agonists exhibiting unique features, which set it apart from other presently known L-type Ca(2+)-channel agonists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal adjustment of brain networks allows the biased processing of information in response to the demand of environments and is therefore prerequisite for adaptive behaviour. It is widely shown that a biased state of networks is associated with a particular cognitive process. However, those associations were identified by backward categorization of trials and cannot provide a causal association with cognitive processes. This problem still remains a big obstacle to advance the state of our field in particular human cognitive neuroscience. In my talk, I will present two approaches to address the causal relationships between brain network interactions and behaviour. Firstly, we combined connectivity analysis of fMRI data and a machine leaning method to predict inter-individual differences of behaviour and responsiveness to environmental demands. The connectivity-based classification approach outperforms local activation-based classification analysis, suggesting that interactions in brain networks carry information of instantaneous cognitive processes. Secondly, we have recently established a brand new method combining transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and EEG. We use the method to measure signal transmission between brain areas while introducing extrinsic oscillatory brain activity and to study causal association between oscillatory activity and behaviour. We show that phase-matched oscillatory activity creates the phase-dependent modulation of signal transmission between brain areas, while phase-shifted oscillatory activity blunts the phase-dependent modulation. The results suggest that phase coherence between brain areas plays a cardinal role in signal transmission in the brain networks. In sum, I argue that causal approaches will provide more concreate backbones to cognitive neuroscience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the validity of multi-fiber muscle velocity recovery cycles (VRCs) recorded by direct muscle stimulation with submaximal stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech melody or prosody subserves linguistic, emotional, and pragmatic functions in speech communication. Prosodic perception is based on the decoding of acoustic cues with a predominant function of frequency-related information perceived as speaker's pitch. Evaluation of prosodic meaning is a cognitive function implemented in cortical and subcortical networks that generate continuously updated affective or linguistic speaker impressions. Various brain-imaging methods allow delineation of neural structures involved in prosody processing. In contrast to functional magnetic resonance imaging techniques, DC (direct current, slow) components of the EEG directly measure cortical activation without temporal delay. Activation patterns obtained with this method are highly task specific and intraindividually reproducible. Studies presented here investigated the topography of prosodic stimulus processing in dependence on acoustic stimulus structure and linguistic or affective task demands, respectively. Data obtained from measuring DC potentials demonstrated that the right hemisphere has a predominant role in processing emotions from the tone of voice, irrespective of emotional valence. However, right hemisphere involvement is modulated by diverse speech and language-related conditions that are associated with a left hemisphere participation in prosody processing. The degree of left hemisphere involvement depends on several factors such as (i) articulatory demands on the perceiver of prosody (possibly, also the poser), (ii) a relative left hemisphere specialization in processing temporal cues mediating prosodic meaning, and (iii) the propensity of prosody to act on the segment level in order to modulate word or sentence meaning. The specific role of top-down effects in terms of either linguistically or affectively oriented attention on lateralization of stimulus processing is not clear and requires further investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

F90927 is a newly developed cardioactive drug with a steroid-like structure. It acts directly and agonistically on the cardiac L-type Ca2+ channel by shifting its voltage-dependent activation toward more negative potentials. This leads to an increased influx of Ca2+ and, therefore, to a stronger contraction; however, no arrhythmias occur. Calcium current stimulation can already be observed at nanomolar concentrations, but higher concentrations of F90927 elevate intracellular Ca2+ concentration, causing a reduction of the myocardial compliance and an increased diastolic blood pressure. Vessels also react to F90927 and contract in its presence. Binding of F90927 with the L-type Ca2+ channel presumably occurs in the vicinity of the transmembrane domains III and IV of the alpha1 subunit. F90927 exhibits no use dependence and interacts with Ca2+ channel inhibitors of all three known classes of channel modulators (dihydropyridines, phenylalkylamines, and benzothiazepines), suggesting that it is a member of a new class of Ca2+ channel modulators. Due to its adverse effects on blood pressure and vessel contraction, F90927 is not an ideal drug candidate. It has, however, some unique properties, which makes it a promising tool to study the function of the L-type Ca2+ channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a missing link between tree physiological and wood-anatomical knowledge which makes it impossible mechanistically to explain and predict the radial growth of individual trees from climate data. Empirical data of microclimatic factors, intra-annual growth rates, and tree-specific ratios between actual and potential transpiration (T PET−1) of trees of three species (Quercus pubescens, Pinus sylvestris, and Picea abies) at two dry sites in the central Wallis, Switzerland, were recorded from 2002 to 2004 at a 10 min resolution. This included the exceptionally hot and dry summer of 2003. These data were analysed in terms of direct (current conditions) and indirect impacts (predispositions of the past year) on growth. Rain was found to be the only factor which, to a large extent, consistently explained the radial increment for all three tree species at both sites and in the short term as well. Other factors had some explanatory power on the seasonal time-scale only. Quercus pubescens built up much of its tree ring before bud break. Pinus sylvestris and Picea abies started radial growth 1–2 weeks after Quercus pubescens and this was despite the fact that they had a high T PET−1 before budburst and radial growth started. A high T PET−1 was assumed to be related to open stomata, a very high net CO2 assimilation rate, and thus a potential carbon (C)-income for the tree. The main period of radial growth covered about 30–70% of the productive days of a year. In terms of C-allocation, these results mean that Quercus pubescens depended entirely on internal C-stores in the early phase of radial growth and that for all three species there was a long time period of C-assimilation which was not used for radial growth in above-ground wood. The results further suggest a strong dependence of radial growth on the current tree water relations and only secondarily on the C-balance. A concept is discussed which links radial growth over a feedback loop to actual tree water-relations and long-term affected C-storage to microclimate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prosody or speech melody subserves linguistic (e.g., question intonation) and emotional functions in speech communication. Findings from lesion studies and imaging experiments suggest that, depending on function or acoustic stimulus structure, prosodic speech components are differentially processed in the right and left hemispheres. This direct current (DC) potential study investigated the linguistic processing of digitally manipulated pitch contours of sentences that carried an emotional or neutral intonation. Discrimination of linguistic prosody was better for neutral stimuli as compared to happily as well as fearfully spoken sentences. Brain activation was increased during the processing of happy sentences as compared to neutral utterances. Neither neutral nor emotional stimuli evoked lateralized processing in the left or right hemisphere, indicating bilateral mechanisms of linguistic processing for pitch direction. Acoustic stimulus analysis suggested that prosodic components related to emotional intonation, such as pitch variability, interfered with linguistic processing of pitch course direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a popular concept in clinical neurology that muscles of the lower face receive predominantly crossed cortico-bulbar motor input, whereas muscles of the upper face receive additional ipsilateral, uncrossed input. To test this notion, we used focal transcranial magnetic brain stimulation to quantify crossed and uncrossed cortico-muscular projections to 6 different facial muscles (right and left Mm. frontalis, nasalis, and orbicularis oris) in 36 healthy right-handed volunteers (15 men, 21 women, mean age 25 years). Uncrossed input was present in 78% to 92% of the 6 examined muscles. The mean uncrossed: crossed response amplitude ratios were 0.74/0.65 in right/left frontalis, 0.73/0.59 in nasalis, and 0.54/0.71 in orbicularis oris; ANOVA p>0.05). Judged by the sizes of motor evoked potentials, the cortical representation of the 3 muscles was similar. The amount of uncrossed projections was different between men and women, since men had stronger left-to-left projections and women stronger right-to-right projections. We conclude that the amount of uncrossed pyramidal projections is not different for muscles of the upper from those of the lower face. The clinical observation that frontal muscles are often spared in central facial palsies must, therefore, be explained differently. Moreover, gender specific lateralization phenomena may not only be present for higher level behavioural functions, but may also affect simple systems on a lower level of motor hierarchy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Motor evoked potentials (MEPs) after transcranial magnetic brain stimulation (TMS) are smaller than CMAPs after peripheral nerve stimulation, because desynchronization of the TMS-induced motor neurone discharges occurs (i.e. MEP desynchronization). This desynchronization effect can be eliminated by use of the triple stimulation technique (TST; Brain 121 (1998) 437). The objective of this paper is to study the effect of discharge desynchronization on MEPs by comparing the size of MEP and TST responses. METHODS: MEP and TST responses were obtained in 10 healthy subjects during isometric contractions of the abductor digiti minimi, during voluntary background contractions between 0% and 20% of maximal force, and using 3 different stimulus intensities. Additional data from other normals and from multiple sclerosis (MS) patients were obtained from previous studies. RESULTS: MEPs were smaller than TST responses in all subjects and under all stimulating conditions, confirming the marked influence of desynchronization on MEPs. There was a linear relation between the amplitudes of MEPs vs. TST responses, independent of the degree of voluntary contraction and stimulus intensity. The slope of the regression equation was 0.66 on average, indicating that desynchronization reduced the MEP amplitude on average by one third, with marked inter-individual variations. A similar average proportion was found in MS patients. CONCLUSIONS: The MEP size reduction induced by desynchronization is not influenced by the intensity of TMS and by the level of facilitatory voluntary background contractions. It is similar in healthy subjects and in MS patients, in whom increased desynchronization of central conduction was previously suggested to occur. Thus, the MEP size reduction observed may not parallel the actual amount of desynchronization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was undertaken to test whether recovery cycle measurements can provide useful information about the membrane potential of human muscle fibers. Multifiber responses to direct muscle stimulation through needle electrodes were recorded from the brachioradialis of healthy volunteers, and the latency changes measured as conditioning stimuli were applied at interstimulus intervals of 2-1000 ms. In all subjects, the relative refractory period (RRP), which lasted 3.27 +/- 0.45 ms (mean +/- SD, n = 12), was followed by a phase of supernormality, in which the velocity increased by 9.3 +/- 3.4% at 6.1 +/- 1.3 ms, and recovered over 1 s. A broad hump of additional supernormality was seen at around 100 ms. Extra conditioning stimuli had little effect on the early supernormality but increased the later component. The two phases of supernormality resembled early and late afterpotentials, attributable respectively to the passive decay of membrane charge and potassium accumulation in the t-tubules. Five minutes of ischemia progressively prolonged the RRP and reduced supernormality, confirming that these parameters are sensitive to membrane depolarization. Velocity recovery cycles may provide useful information about altered muscle membrane potential and t-tubule function in muscle disease. Muscle Nerve, 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Osteoarthritis is the most common form of joint disease and the leading cause of pain and physical disability in the elderly. Transcutaneous electrical nerve stimulation (TENS), interferential current stimulation and pulsed electrostimulation are used widely to control both acute and chronic pain arising from several conditions, but some policy makers regard efficacy evidence as insufficient. OBJECTIVES: To compare transcutaneous electrostimulation with sham or no specific intervention in terms of effects on pain and withdrawals due to adverse events in patients with knee osteoarthritis. SEARCH STRATEGY: We updated the search in CENTRAL, MEDLINE, EMBASE, CINAHL and PEDro up to 5 August 2008, checked conference proceedings and reference lists, and contacted authors. SELECTION CRITERIA: Randomised or quasi-randomised controlled trials that compared transcutaneously applied electrostimulation with a sham intervention or no intervention in patients with osteoarthritis of the knee. DATA COLLECTION AND ANALYSIS: We extracted data using standardised forms and contacted investigators to obtain missing outcome information. Main outcomes were pain and withdrawals or dropouts due to adverse events. We calculated standardised mean differences (SMDs) for pain and relative risks for safety outcomes and used inverse-variance random-effects meta-analysis. The analysis of pain was based on predicted estimates from meta-regression using the standard error as explanatory variable. MAIN RESULTS: In this update we identified 14 additional trials resulting in the inclusion of 18 small trials in 813 patients. Eleven trials used TENS, four interferential current stimulation, one both TENS and interferential current stimulation, and two pulsed electrostimulation. The methodological quality and the quality of reporting was poor and a high degree of heterogeneity among the trials (I(2) = 80%) was revealed. The funnel plot for pain was asymmetrical (P < 0.001). The predicted SMD of pain intensity in trials as large as the largest trial was -0.07 (95% CI -0.46 to 0.32), corresponding to a difference in pain scores between electrostimulation and control of 0.2 cm on a 10 cm visual analogue scale. There was little evidence that SMDs differed on the type of electrostimulation (P = 0.94). The relative risk of being withdrawn or dropping out due to adverse events was 0.97 (95% CI 0.2 to 6.0). AUTHORS' CONCLUSIONS: In this update, we could not confirm that transcutaneous electrostimulation is effective for pain relief. The current systematic review is inconclusive, hampered by the inclusion of only small trials of questionable quality. Appropriately designed trials of adequate power are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Recording of muscle velocity recovery cycles (MVRCs) has been developed as a technique to investigate the pathophysiology of muscle diseases. MVRCs have been measured by direct muscle stimulation and concentric electromyographic needle recording. This study was undertaken to determine whether recordings can be made with surface electrodes. METHODS MVRCs with 1 and 2 conditioning stimuli were recorded simultaneously with concentric needle and surface electrodes from the brachioradialis muscle in 12 healthy volunteers. Muscle relative refractory period, early and late supernormality, and extra-late supernormality were compared between the recording techniques. RESULTS Surface recordings were possible in all subjects. The multifiber action potentials recorded with surface electrodes were smaller than those recorded with needles, but there was no significant difference between any of their MVRC properties. CONCLUSIONS MVRCs can be recorded with surface electrodes in healthy subjects. The use of surface electrodes may facilitate the technique of recording MVRCs. Muscle Nerve 53: 205-208, 2016.