29 resultados para retina rod
Resumo:
As a more complete picture of the clinical phenotype of Parkinson's disease emerges, non-motor symptoms have become increasingly studied. Prominent among these non-motor phenomena are mood disturbance, cognitive decline and dementia, sleep disorders, hyposmia and autonomic failure. In addition, visual symptoms are common, ranging from complaints of dry eyes and reading difficulties, through to perceptual disturbances (feelings of presence and passage) and complex visual hallucinations. Such visual symptoms are a considerable cause of morbidity in Parkinson's disease and, with respect to visual hallucinations, are an important predictor of cognitive decline as well as institutional care and mortality. Evidence exists of visual dysfunction at several levels of the visual pathway in Parkinson's disease. This includes psychophysical, electrophysiological and morphological evidence of disruption of retinal structure and function, in addition to disorders of ‘higher’ (cortical) visual processing. In this review, we will draw together work from animal and human studies in an attempt to provide an insight into how Parkinson's disease affects the retina and how these changes might contribute to the visual symptoms experienced by patients.
Identification of small Sca-1(+), Lin(-), CD45(-) multipotential cells in the neonatal murine retina
Resumo:
OBJECTIVE: Bone marrow contains a subset of stem cells that give rise to nonhematopoietic lineages. These nonhematopoietic stem cells appear heterogeneous and contain cells committed to mesenchymal and endothelial lineages, as well as more primitive multipotential cells resembling progenitors of germ cells and very small embryonic/epiblast-like stem cells (VSELs). Nonhematopoietic stem cells can be mobilized from the bone marrow in response to tissue injury, and cells with similar properties have been found in cord blood and normal adult organs. However, the relationship between bone marrow cells and these adult organ stem cells is still unclear. The differentiation potential of some adult stem cells is organ-restricted, but other populations appear to retain multipotential capacity. MATERIALS AND METHODS: A population of small Sca-1(+), lineage-negative (Lin(-)), CD45(-) cells resembling VSELs were isolated from neonatal mouse retina by cell sorting. Differentiation of the cells in culture was achieved by exposure to embryonic stem cell differentiation protocols. RESULTS: VSEL-like cells comprise 1.5% of the neonatal mouse retina. They remain quiescent during retinal differentiation, and thus they do not contribute to normal retinal development. However, they display eye cell differentiation potential in culture and they are also multipotential and can give rise to cells representative of all three embryonic layers. CONCLUSIONS: The neonatal retina is an abundant postnatal source of multipotential VSEL-like cells that can differentiate in culture into a variety of lineages.
Resumo:
Spectral domain optical coherence tomography (SD-OCT) in patients can deliver retinal cross-sectional images with high resolution. This may allow the evaluation of the extent of damage to the retinal pigment epithelium (RPE) and the neurosensory retina after laser treatment. This article aims to investigate the value of SD-OCT in comparing laser lesions produced by conventional laser photocoagulation and selective retina treatment (SRT).
Resumo:
Primary loss of photoreceptors caused by diseases such as retinitis pigmentosa is one of the main causes of blindness worldwide. To study such diseases, rodent models of N-methyl-N-nitrosourea (MNU)-induced retinal degeneration are widely used. As zebrafish (Danio rerio) are a popular model system for visual research that offers persistent retinal neurogenesis throughout the lifetime and retinal regeneration after severe damage, we have established a novel MNU-induced model in this species. Histology with staining for apoptosis (TUNEL), proliferation (PCNA), activated Müller glial cells (GFAP), rods (rhodopsin) and cones (zpr-1) were performed. A characteristic sequence of retinal changes was found. First, apoptosis of rod photoreceptors occurred 3 days after MNU treatment and resulted in a loss of rod cells. Consequently, proliferation started in the inner nuclear layer (INL) with a maximum at day 8, whereas in the outer nuclear layer (ONL) a maximum was observed at day 15. The proliferation in the ONL persisted to the end of the follow-up (3 months), interestingly, without ongoing rod cell death. We demonstrate that rod degeneration is a sufficient trigger for the induction of Müller glial cell activation, even if only a minimal number of rod cells undergo cell death. In conclusion, the use of MNU is a simple and feasible model for rod photoreceptor degeneration in the zebrafish that offers new insights into rod regeneration.
Resumo:
We present an image quality assessment and enhancement method for high-resolution Fourier-Domain OCT imaging like in sub-threshold retina therapy. A Maximum-Likelihood deconvolution algorithm as well as a histogram-based quality assessment method are evaluated.
Resumo:
Retinal laser photocoagulation is an established and successful treatment for a variety of retinal diseases. While being a valuable treatment modality, laser photocoagulation shows the drawback of employing high energy lasers which are capable of physically destroying the neural retina. For reliable therapy, it is therefore crucial to closely monitor the therapy effects caused in the retinal tissue. A depth resolved representation of optical tissue properties as provided by optical coherence tomography may provide valuable information about the treatment effects in the retinal layers if recorded simultaneously to laser coagulation. Therefore, in this work, the use of ultra-high resolution optical coherence tomography to represent tissue changes caused by conventional and selective retinal photocoagulation is investigated. Laser lesions were placed on porcine retina ex-vivo using a 577 nm laser as well as a pulsed laser at 527 nm built for selective treatment of the retinal pigment epithelium. Applied energies were varied to generate lesions best representing the span from under- to overtreatment. The lesions were examined using a custom-designed optical coherence tomography system with an axial resolution of 1.78 μm and 70 kHz Ascan rate. Optical coherence tomography scans included volume scans before and after irradiation, as well as time lapse scans (Mscan) of the lesions. Results show OCT lesion visibility thresholds to be below the thresholds of ophthalmoscopic inspection. With the ultra-high resolution OCT, 42% - 44% of ophthalmoscopically invisible lesions could be detected and lesions that were under- or overexposed could be distinguished using the OCT data.
Resumo:
Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.
Resumo:
Purpose: Selective retina therapy (SRT) is a novel treatment for retinal pathologies, solely targeting the retinal pigment epithelium (RPE). During SRT, the detection of an immediate tissue reaction is challenging as tissue effects remain limited to intracellular RPE photodisruption. Time-resolved ultra-high axial resolution optical coherence tomography (OCT) is thus evaluated for the monitoring of dynamic optical changes at and around the RPE during SRT. Methods: An experimental OCT system with an ultra-high axial resolution of 1.78 µm was combined with an SRT system and time-resolved OCT M-scans of the target area were recorded from four patients undergoing SRT. OCT scans were analyzed and OCT morphology was correlated with findings in fluorescein angiography, fundus photography and cross-sectional OCT. Results: In cases where the irradiation caused RPE damage proven by fluorescein angiography, the lesions were well discernible in time-resolved OCT images but remained invisible in fundus photography and cross-sectional OCT acquired after treatment. If RPE damage was introduced, all applied SRT pulses led to detectable signal changes in the time-resolved OCT images. The extent of optical signal variation seen in the OCT data appeared to scale with the applied SRT pulse energy. Conclusion: The first clinical results proved that successful SRT irradiation induces detectable changes in the OCT M-scan signal while it remains invisible in conventional ophthalmoscopic imaging. Thus, real-time high-resolution OCT is a promising modality to monitor and analyze tissue effects introduced by selective retina therapy and may be used to guide SRT in an automatic feedback mode.
Resumo:
This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems.
Resumo:
Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.
Resumo:
Purpose In recent years, selective retina laser treatment (SRT), a sub-threshold therapy method, avoids widespread damage to all retinal layers by targeting only a few. While these methods facilitate faster healing, their lack of visual feedback during treatment represents a considerable shortcoming as induced lesions remain invisible with conventional imaging and make clinical use challenging. To overcome this, we present a new strategy to provide location-specific and contact-free automatic feedback of SRT laser applications. Methods We leverage time-resolved optical coherence tomography (OCT) to provide informative feedback to clinicians on outcomes of location-specific treatment. By coupling an OCT system to SRT treatment laser, we visualize structural changes in the retinal layers as they occur via time-resolved depth images. We then propose a novel strategy for automatic assessment of such time-resolved OCT images. To achieve this, we introduce novel image features for this task that when combined with standard machine learning classifiers yield excellent treatment outcome classification capabilities. Results Our approach was evaluated on both ex vivo porcine eyes and human patients in a clinical setting, yielding performances above 95 % accuracy for predicting patient treatment outcomes. In addition, we show that accurate outcomes for human patients can be estimated even when our method is trained using only ex vivo porcine data. Conclusion The proposed technique presents a much needed strategy toward noninvasive, safe, reliable, and repeatable SRT applications. These results are encouraging for the broader use of new treatment options for neovascularization-based retinal pathologies.
Resumo:
PURPOSE To report acute/subacute vision loss and paracentral scotomata in patients with idiopathic multifocal choroiditis/punctate inner choroidopathy due to large zones of acute photoreceptor attenuation surrounding the chorioretinal lesions. METHODS Multimodal imaging case series. RESULTS Six women and 2 men were included (mean age, 31.5 ± 5.8 years). Vision ranged from 20/20-1 to hand motion (mean, 20/364). Spectral domain optical coherence tomography demonstrated extensive attenuation of the external limiting membrane, ellipsoid and interdigitation zones, adjacent to the visible multifocal choroiditis/punctate inner choroidopathy lesions. The corresponding areas were hyperautofluorescent on fundus autofluorescence and were associated with corresponding visual field defects. Full-field electroretinogram (available in three cases) showed markedly decreased cone/rod response, and multifocal electroretinogram revealed reduced amplitudes and increased implicit times in two cases. Three patients received no treatment, the remaining were treated with oral corticosteroids (n = 4), oral acyclovir/valacyclovir (n = 2), intravitreal/posterior subtenon triamcinolone acetate (n = 3), and anti-vascular endothelial growth factor (n = 2). Visual recovery occurred in only three cases of whom two were treated. Varying morphological recovery was found in six cases, associated with decrease in hyperautofluorescence on fundus autofluorescence. CONCLUSION Multifocal choroiditis/punctate inner choroidopathy can present with transient or permanent central photoreceptor attenuation/loss. This presentation is likely a variant of multifocal choroiditis/punctate inner choroidopathy with chorioretinal atrophy. Associated changes are best evaluated using multimodal imaging.