21 resultados para pyrophosphate-fructose 6-phosphate 1-phosphotransferase
Resumo:
Glycated haemoglobin levels (HbA1 and HbA1c) are established parameters of long-term glycaemic control in diabetic patients. Depending on the method used, fetal haemoglobin interferes with the assays for glycated haemoglobin. If present in high amounts, fetal haemoglobin may lead to overestimation of glycated haemoglobin levels, and therefore, of average blood glucose concentration in diabetic patients. Glycated (HbA1c) and fetal haemoglobin levels were measured by high pressure liquid chromatography in 60 (30 female) adult Type 1 (insulin-dependent) diabetic patients of Swiss descent, and were compared with levels obtained from 60 normal, non-diabetic control subjects matched for age and sex. Fetal haemoglobin levels were significantly higher in the diabetic patients (0.6 +/- 0.1%, mean +/- SEM; range: 0-3.6%) than in the control subjects (0.4 +/- 0.1%, p < 0.001). Elevated fetal haemoglobin levels (> or = 0.6%) were found in 23 of 60 diabetic patients (38%) compared to 9 of 60 control subjects (15%; chi 2 = 8.35, p < 0.01). In addition, fetal haemoglobin levels in diabetic patients are weakly correlated with glycated haemoglobin (HbA1c) (r = 0.38, p < 0.01). Fetal haemoglobin results were confirmed with the alkali denaturation procedure, and by immunocytochemistry using a polyclonal rabbit anti-fetal haemoglobin antibody. A significant proportion of adult patients with Type 1 diabetes has elevated fetal haemoglobin levels. In certain patients this may lead to a substantial over-estimation of glycated haemoglobin levels, and consequently of estimated, average blood glucose levels. The reason for this increased prevalence of elevated fetal haemoglobin remains unclear, but it may be associated with poor glycaemic control.
Resumo:
OBJECTIVE: Contact of blood with artificial surfaces and air as well as ischemia/reperfusion injury to the heart and lungs mediate systemic and local inflammation during cardiopulmonary bypass (CPB). Activation of complement and coagulation cascades leads to and accompanies endothelial cell damage. Therefore, endothelial-targeted cytoprotection with the complement inhibitor and endothelial protectant dextran sulfate (DXS, MW 5000) may attenuate CBP-associated myocardial and pulmonary injury. METHODS: Eighteen pigs (DXS, n=10; phosphate buffered saline [PBS], n=8) underwent standard cardiopulmonary bypass. After aortic cross-clamping, cardiac arrest was initiated with modified Buckberg blood cardioplegia (BCP), repeated after 30 and 60 min with BCP containing either DXS (300 mg/10 ml, equivalent to 5mg/kg) or 10 ml of PBS. Following 30 min reperfusion, pigs were weaned from CPB. During 2h of observation, cardiac function was monitored by echocardiography and invasive pressure measurements. Inflammatory and coagulation markers were assessed regularly. Animals were then sacrificed and heart and lungs analyzed. RESULTS: DXS significantly reduced CK-MB levels (43.4+/-14.8 ng/ml PBS, 35.9+/-11.1 ng/ml DXS, p=0.042) and significantly diminished cytokine release: TNFalpha (1507.6+/-269.2 pg/ml PBS, 222.1+/-125.6 pg/ml DXS, p=0.0071), IL1beta (1081.8+/-203.0 pg/ml PBS, 110.7+/-79.4 pg/ml DXS, p=0.0071), IL-6 (173.0+/-91.5 pg/ml PBS, 40.8+/-19.4 pg/ml DXS, p=0.002) and IL-8 (304.6+/-81.3 pg/ml PBS, 25.4+/-14.2 pg/ml DXS, p=0.0071). Tissue endothelin-1 levels were significantly reduced (6.29+/-1.90 pg/100mg PBS, 3.55+/-1.15 pg/100mg DXS p=0.030) as well as thrombin-anti-thrombin formation (20.7+/-1.0 microg/ml PBS, 12.8+/-4.1 microg/ml DXS, p=0.043). Also DXS reduced cardiac and pulmonary complement deposition, neutrophil infiltration, hemorrhage and pulmonary edema (measured as lung water content, 81+/-3% vs 78+/-3%, p=0.047), indicative of attenuated myocardial and pulmonary CPB-injury. Diastolic left ventricular function (measured as dp/dt(min)), pulmonary artery pressure (21+/-3 mmHg PBS, 19+/-3 mmHg DXS, p=0.002) and right ventricular pressure (21+/-1 mmHg PBS, 19+/-3 mmHg DXS p=0.021) were significantly improved with the use of DXS. CONCLUSIONS: Addition of DXS to the BCP solution ameliorates post-CPB injury and to a certain extent improves cardiopulmonary function. Endothelial protection in addition to myocyte protection may improve post-CPB outcome and recovery.
Resumo:
OBJECTIVE: To determine the effects of cognitive-behavioral stress management (CBSM) training on clinical and psychosocial markers in HIV-infected persons. METHODS: A randomized controlled trial in four HIV outpatient clinics of 104 HIV-infected persons taking combination antiretroviral therapy (cART), measuring HIV-1 surrogate markers, adherence to therapy and well-being 12 months after 12 group sessions of 2 h CBSM training. RESULTS: Intent-to-treat analyses showed no effects on HIV-1 surrogate markers in the CBSM group compared with the control group: HIV-1 RNA < 50 copies/ml in 81.1% [95% confidence interval (CI), 68.0-90.6] and 74.5% (95% CI, 60.4-85.7), respectively (P = 0.34), and mean CD4 cell change from baseline of 53.0 cells/microl (95% CI, 4.1-101.8) and 15.5 cells/microl (95% CI, -34.3 to 65.4), respectively (P = 0.29). Self-reported adherence to therapy did not differ between groups at baseline (P = 0.53) or at 12 month's post-intervention (P = 0.47). Significant benefits of CBSM over no intervention were observed in mean change of quality of life scores: physical health 2.9 (95% CI, 0.7-5.1) and -0.2 (95% CI, -2.1 to 1.8), respectively (P = 0.05); mental health 4.8 (95% CI, 1.8-7.3) and -0.5 (95% CI, -3.3 to 2.2) (P = 0.02); anxiety -2.1 (95% CI, -3.6 to -1.0) and 0.3 (95% CI, -0.7 to 1.4), respectively (P = 0.002); and depression -2.1 (95% CI, -3.2 to -0.9) and 0.02 (95% CI, -1.0 to 1.1), respectively (P = 0.001). Alleviation of depression and anxiety symptoms were most pronounced among participants with high psychological distress at baseline. CONCLUSION: CBSM training of HIV-infected persons taking on cART does not improve clinical outcome but has lasting effects on quality of life and psychological well-being.
Resumo:
As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate the metabolic effect of p73, here, we compared the global metabolic profile of livers from p73 knockout and wild-type mice under both control and starvation conditions. Our results show that the depletion of all p73 isoforms cause altered lysine metabolism and glycolysis, distinct patterns for glutathione synthesis and Krebs cycle, as well as an elevated pentose phosphate pathway and abnormal lipid accumulation. These results indicate that p73 regulates basal and starvation-induced fuel metabolism in the liver, a finding that is likely to be highly relevant for metabolism-associated disorders, such as diabetes and cancer.
Resumo:
OBJECTIVES The SOURCE XT Registry (Edwards SAPIEN XT Aortic Bioprosthesis Multi-Region Outcome Registry) assessed the use and clinical outcomes with the SAPIEN XT (Edwards Lifesciences, Irvine, California) valve in the real-world setting. BACKGROUND Transcatheter aortic valve replacement is an established treatment for high-risk/inoperable patients with severe aortic stenosis. The SAPIEN XT is a balloon-expandable valve with enhanced features allowing delivery via a lower profile sheath. METHODS The SOURCE XT Registry is a prospective, multicenter, post-approval study. Data from 2,688 patients at 99 sites were analyzed. The main outcome measures were all-cause mortality, stroke, major vascular complications, bleeding, and pacemaker implantations at 30-days and 1 year post-procedure. RESULTS The mean age was 81.4 ± 6.6 years, 42.3% were male, and the mean logistic EuroSCORE (European System for Cardiac Operative Risk Evaluation) was 20.4 ± 12.4%. Patients had a high burden of coronary disease (44.2%), diabetes (29.4%), renal insufficiency (28.9%), atrial fibrillation (25.6%), and peripheral vascular disease (21.2%). Survival was 93.7% at 30 days and 80.6% at 1 year. At 30-day follow-up, the stroke rate was 3.6%, the rate of major vascular complications was 6.5%, the rate of life-threatening bleeding was 5.5%, the rate of new pacemakers was 9.5%, and the rate of moderate/severe paravalvular leak was 5.5%. Multivariable analysis identified nontransfemoral approach (hazard ratio [HR]: 1.84; p < 0.0001), renal insufficiency (HR: 1.53; p < 0.0001), liver disease (HR: 1.67; p = 0.0453), moderate/severe tricuspid regurgitation (HR: 1.47; p = 0.0019), porcelain aorta (HR: 1.47; p = 0.0352), and atrial fibrillation (HR: 1.41; p = 0.0014), with the highest HRs for 1-year mortality. Major vascular complications and major/life-threatening bleeding were the most frequently seen complications associated with a significant increase in 1-year mortality. CONCLUSIONS The SOURCE XT Registry demonstrated appropriate use of the SAPIEN XT THV in the first year post-commercialization in Europe. The safety profile is sustained, and clinical benefits have been established in the real-world setting. (SOURCE XT Registry; NCT01238497).
Resumo:
myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.