80 resultados para noninvasive brain stimulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep brain stimulation of different targets has been shown to drastically improve symptoms of a variety of neurological conditions. However, the occurrence of disabling side effects may limit the ability to deliver adequate amounts of current necessary to reach the maximal benefit. Computed models have suggested that reduction in electrode size and the ability to provide directional stimulation could increase the efficacy of such therapies. This has never been demonstrated in humans. In the present study, we assess the effect of directional stimulation compared to omnidirectional stimulation. Three different directions of stimulation as well as omnidirectional stimulation were tested intraoperatively in the subthalamic nucleus of 11 patients with Parkinson's disease and in the nucleus ventralis intermedius of two other subjects with essential tremor. At the trajectory chosen for implantation of the definitive electrode, we assessed the current threshold window between positive and side effects, defined as the therapeutic window. A computed finite element model was used to compare the volume of tissue activated when one directional electrode was stimulated, or in case of omnidirectional stimulation. All but one patient showed a benefit of directional stimulation compared to omnidirectional. A best direction of stimulation was observed in all the patients. The therapeutic window in the best direction was wider than the second best direction (P = 0.003) and wider than the third best direction (P = 0.002). Compared to omnidirectional direction, the therapeutic window in the best direction was 41.3% wider (P = 0.037). The current threshold producing meaningful therapeutic effect in the best direction was 0.67 mA (0.3-1.0 mA) and was 43% lower than in omnidirectional stimulation (P = 0.002). No complication as a result of insertion of the directional electrode or during testing was encountered. The computed model revealed a volume of tissue activated of 10.5 mm(3) in omnidirectional mode, compared with 4.2 mm(3) when only one electrode was used. Directional deep brain stimulation with a reduced electrode size applied intraoperatively in the subthalamic nucleus as well as in the nucleus ventralis intermedius of the thalamus significantly widened the therapeutic window and lowered the current needed for beneficial effects, compared to omnidirectional stimulation. The observed side effects related to direction of stimulation were consistent with the anatomical location of surrounding structures. This new approach opens the door to an improved deep brain stimulation therapy. Chronic implantation is further needed to confirm these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Deep brain stimulation (DBS) is highly successful in treating Parkinson's disease (PD), dystonia, and essential tremor (ET). Until recently implantable neurostimulators were nonrechargeable, battery-driven devices, with a lifetime of about 3-5 years. This relatively short duration causes problems for patients (e.g. programming and device-use limitations, unpredictable expiration, surgeries to replace depleted batteries). Additionally, these batteries (relatively large with considerable weight) may cause discomfort. To overcome these issues, the first rechargeable DBS device was introduced: smaller, lighter and intended to function for 9 years. Methods: Of 35 patients implanted with the rechargeable device, 21 (including 8 PD, 10 dystonia, 2 ET) were followed before and 3 months after surgery and completed a systematic survey of satisfaction with the rechargeable device. Results: Overall patient satisfaction was high (83.3 ± 18.3). Dystonia patients tended to have lower satisfaction values for fit and comfort of the system than PD patients. Age was significantly negatively correlated with satisfaction regarding process of battery recharging. Conclusions: Dystonia patients (generally high-energy consumption, severe problems at the DBS device end-of-life) are good, reliable candidates for a rechargeable DBS system. In PD, younger patients, without signs of dementia and good technical understanding, might have highest benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studying social behavior often requires the simultaneous interaction of many subjects. As yet, however, no painless, noninvasive brain stimulation tool existed that allowed the simultaneous affection of brain processes in many interacting subjects. Here we show that transcranial direct current stimulation (tDCS) can overcome these limits. We apply right prefrontal cathodal tDCS and show that subjects' propensity to punish unfair behavior is reduced significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Neurogenic bladder dysfunction is well described in Parkinson's disease and has a major impact on quality of live. In contrast, little is known about the extent of urinary symptoms in other movement disorders such as dystonia and about the role of the basal ganglia in bladder control.. PATIENTS AND METHODS A consecutive series of 11 patients with severe dystonia undergoing deep brain stimulation (DBS) of the globus pallidus internus was prospectively enrolled. Bladder function was assessed by the International Prostate Symptom Score and urodynamic investigation (UDI) before DBS surgery and afterwards in the conditions with and without DBS. RESULTS In UDI before DBS surgery, detrusor overactivity was found in 36% (4/11) of dystonia patients. With pallidal DBS ON, maximum flow rate significantly decreased, post-void residual significantly increased and detrusor overactivity disappeared.. CONCLUSIONS Pathological urodynamic changes can be found in a relevant percentage of dystonia patients. Pallidal DBS has a relaxing effect on detrusor function indicating a role of the basal ganglia in lower urinary tract control. Thus, a better understanding on how subcortical networks influence lower urinary tract function might open new therapeutic perspectives..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Deep brain stimulation (DBS) is recognized as an effective treatment for movement disorders. We recently changed our technique, limiting the number of brain penetrations to three per side. OBJECTIVES The first aim was to evaluate the electrode precision on both sides of surgery since we implemented this surgical technique. The second aim was to analyse whether or not the electrode placement was improved with microrecording and macrostimulation. METHODS We retrospectively reviewed operation protocols and MRIs of 30 patients who underwent bilateral DBS. For microrecording and macrostimulation, we used three parallel channels of the 'Ben Gun' centred on the MRI-planned target. Pre- and post-operative MRIs were merged. The distance between the planned target and the centre of the implanted electrode artefact was measured. RESULTS There was no significant difference in targeting precision on both sides of surgery. There was more intra-operative adjustment of the second electrode positioning based on microrecording and macrostimulation, which allowed to significantly approach the MRI-planned target on the medial-lateral axis. CONCLUSION There was more electrode adjustment needed on the second side, possibly in relation with brain shift. We thus suggest performing a single central track with electrophysiological and clinical assessment, with multidirectional exploration on demand for suboptimal clinical responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we will link neuroimaging, data analysis, and intervention methods in an important psychiatric condition: auditory verbal hallucinations (AVH). The clinical and phenomenological background as well as neurophysiological findings will be covered and discussed with respect to noninvasive brain stimulation. Additionally, methods of noninvasive brain stimulation will be presented as ways to intervene with AVH. Finally, preliminary conclusions and possible future perspectives will be proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established treatment for advanced Parkinson's disease (PD) with disabling motor complications. However, stimulation may be beneficial at an earlier stage of PD when motor fluctuations and dyskinesia are only mild and psychosocial competence is still maintained. The EARLYSTIM trial was conducted in patients with recent onset of levodopa-induced motor complications (<3 years) whose social and occupational functioning remained preserved. This is called 'early' here. The study was a randomized, multicenter, bi-national pivotal trial with a 2 year observation period. Quality of life was the main outcome measure, and a video-based motor score was a blinded secondary outcome of the study. Motor, neuropsychological, psychiatric and psychosocial aspects were captured by established scales and questionnaires. The patient group randomized here is the earliest in the disease course and the youngest recruited in controlled DBS trials so far. The methodological innovation for DBS-studies of this study lies in novel procedures developed and used for monitoring best medical treatment, neurosurgical consistency, best management of stimulation programming, blinded video assessment of motor disability, and prevention of suicidal behaviors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) of different nuclei is being evaluated as a treatment for epilepsy. While encouraging results have been reported, the effects of changes in stimulation parameters have been poorly studied. Here the effects of changes of pulse waveform in high frequency DBS (130 Hz) of the amygdala-hippocampal complex (AH) are presented. These effects were studied on interictal epileptic discharge rates (IEDRs). AH-DBS was implemented with biphasic versus pseudo monophasic charge balanced pulses, in two groups of patients: six with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) and six with non lesional (NLES) temporal epilepsy. In patients with HS, IEDRs were significantly reduced with AH-DBS applied with biphasic pulses in comparison with monophasic pulse. IEDRs were significantly reduced in only two patients with NLES independently to stimulus waveform. Comparison to long-term seizure outcome suggests that IEDRs could be used as a neurophysiological marker of chronic AH-DBS and they suggest that the waveform of the electrical stimuli can play a major role in DBS. We concluded that biphasic stimuli are more efficient than pseudo monophasic pulses in AH-DBS in patients with HS. In patients with NLES epilepsy, other parameters relevant for efficacy of DBS remain to be determined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to investigate the impact of unilateral deep brain stimulation (DBS) of the ventrointermediate (Vim) thalamic nucleus on neuropsychological functioning comparing stimulation-on with stimulation-off conditions. Nine patients [five patients with Parkinson's Disease (PD), two patients with essential tremor (ET) and 2 patients with multiple sclerosis (MS)] underwent comprehensive neuropsychological testing for cognitive functions, including general mental impairment, aphasia, agnosia, executive and constructional abilities, learning, memory, cognitive processing speed and attention as well as depression. The neuropsychological assessments were performed at least 6 months postoperatively (mean 9 months). Testing in the stimulation-on and stimulation-off condition was obtained within a period of 3 to 4 weeks. Unilateral DBS resulted in improvement of tremor in all patients. There were no significant differences between the stimulation-on and the stimulation-off condition with the exception of a decrement of word-recall in the short delay free-recall subtest of the Rey Auditory-Verbal Learning Test (RAVLT). Subgroup analysis indicated that the impairment in word-recall was related to left-sided thalamic stimulation. Our study confirms that chronic unilateral DBS is a safe method with regard to cognitive function. The subtle changes in episodic memory are related to stimulation per se and not to a microthalamotomy effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECT: The authors studied the long-term efficacy of deep brain stimulation (DBS) of the posteroventral lateral globus pallidus internus up to 2 years postoperatively in patients with primary non-DYT1 generalized dystonia or choreoathetosis. The results are briefly compared with those reported for DBS in DYT1 dystonia (Oppenheim dystonia), which is caused by the DYT1 gene. METHODS: Enrollment in this prospective expanded pilot study was limited to adult patients with severely disabling, medically refractory non-DYT1 generalized dystonia or choreoathetosis. Six consecutive patients underwent follow-up examinations at defined intervals of 3 months, 1 year, and 2 years postsurgery. There were five women and one man, and their mean age at surgery was 45.5 years. Formal assessments included both the Burke-Fahn-Marsden dystonia scale and the recently developed Unified Dystonia Rating Scale. Two patients had primary generalized non-DYT1 dystonia, and four suffered from choreoathetosis secondary to infantile cerebral palsy. Bilateral quadripolar DBS electrodes were implanted in all instances, except in one patient with markedly asymmetrical symptoms. There were no adverse events related to surgery. The Burke-Fahn-Marsden scores in the two patients with generalized dystonia improved by 78 and 71% at 3 months, by 82 and 69% at 1 year, and by 78 and 70% at 2 years postoperatively. This was paralleled by marked amelioration of disability scores. The mean improvement in Burke-Fahn-Marsden scores in patients with choreoathetosis was 12% at 3 months, 29% at 1 year, and 23% at 2 years postoperatively, which was not significant. Two of these patients thought that they had achieved marked improvement at 2 years postoperatively, although results of objective evaluations were less impressive. In these two patients there was a minor but stable improvement in disability scores. All patients had an improvement in pain scores at the 2-year follow-up review. Medication was tapered off in both patients with generalized dystonia and reduced in two of the patients with choreoathetosis. All stimulation-induced side effects were reversible on adjustment of the DBS settings. Energy consumption of the batteries was considerably higher than in patients with Parkinson disease. CONCLUSIONS: Chronic pallidal DBS is a safe and effective procedure in generalized non-DYT1 dystonia, and it may become the procedure of choice in patients with medically refractory dystonia. Postoperative improvement of choreoathetosis is more modest and varied, and subjective ratings of outcome may exceed objective evaluations.