34 resultados para ionization-dissociation
A prototype liquid Argon Time Projection Chamber for the study of UV laser multi-photonic ionization
Resumo:
Synthetic modified oligonucleotides are of interest for diagnostic and therapeutic applications, as their biological stability, pairing selectivity, and binding strength can be considerably increased by the incorporation of unnatural structural elements. Homo-DNA is an oligonucleotide homologue based on dideoxy-hexopyranosyl sugar moieties, which follows the Watson-Crick A-T and G-C base pairing system, but does not hybridize with complementary natural DNA and RNA. Homo-DNA has found application as a bioorthogonal element in templated chemistry applications. The gas-phase dissociation of homo-DNA has been investigated by ESI-MS/MS and MALDI-MS/MS, and mechanistic aspects of its gas-phase dissociation are discussed. Experiments revealed a charge state dependent preference for the loss of nucleobases, which are released either as neutrals or as anions. In contrast to DNA, nucleobase loss from homo-DNA was found to be decoupled from backbone cleavage, thus resulting in stable products. This renders an additional stage of ion activation necessary in order to generate sequence-defining fragment ions. Upon MS(3) of the primary base-loss ion, homo-DNA was found to exhibit unspecific backbone dissociation resulting in a balanced distribution of all fragment ion series.
Resumo:
Bovine mastitis, an inflammatory disease of the mammary gland, is one of the most costly diseases affecting the dairy industry. The treatment and prevention of this disease is linked heavily to the use of antibiotics in agriculture and early detection of the primary pathogen is essential to control the disease. Milk samples (n=67) from cows suffering from mastitis were analyzed for the presence of pathogens using PCR electrospray-ionization mass spectrometry (PCR/ESI-MS) and were compared with standard culture diagnostic methods. Concurrent identification of the primary mastitis pathogens was obtained for 64% of the tested milk samples, whereas divergent results were obtained for 27% of the samples. The PCR/ESI-MS failed to identify some of the primary pathogens in 18% of the samples, but identified other pathogens as well as microorganisms in samples that were negative by culture. The PCR/ESI-MS identified bacteria to the species level as well as yeasts and molds in samples that contained a mixed bacterial culture (9%). The sensitivity of the PCR/ESI-MS for the most common pathogens ranged from 57.1 to 100% and the specificity ranged from 69.8 to 100% using culture as gold standard. The PCR/ESI-MS also revealed the presence of the methicillin-resistant gene mecA in 16.2% of the milk samples, which correlated with the simultaneous detection of staphylococci including Staphylococcus aureus. We demonstrated that PCR/ESI-MS, a more rapid diagnostic platform compared with bacterial culture, has the significant potential to serve as an important screening method in the diagnosis of bovine clinical mastitis and has the capacity to be used in infection control programs for both subclinical and clinical disease.
Resumo:
While keto-amino cytosine is the dominant species in aqueous solution, spectroscopic studies in molecular beams and in noble gas matrices show that other cytosine tautomers prevail in apolar environments. Each of these offers two or three H-bonding sites (Watson–Crick, wobble, sugar-edge). The mass- and isomer-specific S1 ← S0 vibronic spectra of cytosine·2-pyridone (Cyt·2PY) and 1-methylcytosine·2PY are measured using UV laser resonant two-photon ionization (R2PI), UV/UV depletion, and IR depletion spectroscopy. The UV spectra of the Watson–Crick and sugar-edge isomers of Cyt·2PY are separated using UV/UV spectral hole-burning. Five different isomers of Cyt·2PY are observed in a supersonic beam. We show that the Watson–Crick and sugar-edge dimers of keto-amino cytosine with 2PY are the most abundant in the beam, although keto-amino-cytosine is only the third most abundant tautomer in the gas phase. We identify the different isomers by combining three different diagnostic tools: (1) methylation of the cytosine N1–H group prevents formation of both the sugar-edge and wobble isomers and gives the Watson–Crick isomer exclusively. (2) The calculated ground state binding and dissociation energies, relative gas-phase abundances, excitation and the ionization energies are in agreement with the assignment of the dominant Cyt·2PY isomers to the Watson–Crick and sugar-edge complexes of keto-amino cytosine. (3) The comparison of calculated ground state vibrational frequencies to the experimental IR spectra in the carbonyl stretch and NH/OH/CH stretch ranges strengthen this identification.
Resumo:
Systematic differences in circadian rhythmicity are thought to be a substantial factor determining inter-individual differences in fatigue and cognitive performance. The synchronicity effect (when time of testing coincides with the respective circadian peak period) seems to play an important role. Eye movements have been shown to be a reliable indicator of fatigue due to sleep deprivation or time spent on cognitive tasks. However, eye movements have not been used so far to investigate the circadian synchronicity effect and the resulting differences in fatigue. The aim of the present study was to assess how different oculomotor parameters in a free visual exploration task are influenced by: a) fatigue due to chronotypical factors (being a 'morning type' or an 'evening type'); b) fatigue due to the time spent on task. Eighteen healthy participants performed a free visual exploration task of naturalistic pictures while their eye movements were recorded. The task was performed twice, once at their optimal and once at their non-optimal time of the day. Moreover, participants rated their subjective fatigue. The non-optimal time of the day triggered a significant and stable increase in the mean visual fixation duration during the free visual exploration task for both chronotypes. The increase in the mean visual fixation duration correlated with the difference in subjectively perceived fatigue at optimal and non-optimal times of the day. Conversely, the mean saccadic speed significantly and progressively decreased throughout the duration of the task, but was not influenced by the optimal or non-optimal time of the day for both chronotypes. The results suggest that different oculomotor parameters are discriminative for fatigue due to different sources. A decrease in saccadic speed seems to reflect fatigue due to time spent on task, whereas an increase in mean fixation duration a lack of synchronicity between chronotype and time of the day.
Resumo:
STUDY OBJECTIVE To determine the effectiveness of an esophageal doppler device to non-invasively detect experimental pseudo-electromechanical dissociation (pseudo-EMD). DESIGN Prospective, controlled, laboratory investigation using an asphyxial canine cardiac arrest model and a newly-developed esophageal flat-flow probe doppler unit. INTERVENTIONS Mongrel dogs (20) were instrumented for hemodynamic monitoring. The esophageal doppler probe was placed in the distal esophagus of each animal. Electromechanical dissociation (EMD) was induced by clamping the endotracheal tube. MEASUREMENTS AND MAIN RESULTS A period of pseudo-EMD was defined as the time where cardiac contractility was present, measured by a micromanometer tipped thoracic aortic catheter, without concurrent femoral pulses by palpation. The pseudo-EMD period could be produced consistently in all 20 animals. The characteristic doppler flow sounds were easily heard using the esophageal device in all animals. The time from endotracheal tube clamping until loss of femoral pulses was 622 +/- 96 s; until loss of radial artery doppler signals was 616 +/- 92 s; until loss of esophageal doppler signals was 728 +/- 88 s; and until loss of aortic fluctuations by thoracic aortic catheter was 728 +/- 82 s. The times to loss of esophageal doppler sounds and loss of aortic fluctuations were not significantly different. However, they were significantly longer than the time to loss of femoral pulses (P < 0.02). CONCLUSIONS The canine asphyxial EMD model can be used for short experimental studies of pseudo-EMD. Pseudo-EMD can be consistently and non-invasively detected with this esophageal doppler device. The device is as reliable as a micromanometer tipped aortic arch catheter in detecting pseudo-EMD. The doppler device could potentially be useful in improving recognition of near cardiac arrest in pre-hospital and emergency department settings. Further research on the utility of this device in other models of low-flow states should be performed.
Resumo:
In continuation of the long tradition of mass spectrometric research at the University of Bern, our group focuses on the characterization of nucleic acids as therapeutic agents and as drug targets. This article provides a short overview of our recent work on platinated single-stranded and higher-order nucleic acids. Nearly three decades ago the development of soft ionization techniques opened a whole new chapter in the mass spectrometric analysis of not only nucleic acids themselves, but also their interactions with potential drug candidates. In contrast to modern next generation sequencing approaches, though, the goal of the tandem mass spectrometric investigation of nucleic acids is by no means the complete sequencing of genetic DNA, but rather the characterization of short therapeutic and regulatory oligonucleotides and the elucidation of nucleic acid–drug interactions. The influence of cisplatin binding on the gas-phase dissociation of nucleic acids was studied by the means of electrospray ionization tandem mass spectrometry. Experiments on native and modified DNA and RNA oligomers confirmed guanine base pairs as the preferred platination site and laid the basis for the formulation of a gas-phase fragmentation mechanism of platinated oligonucleotides. The study was extended to double stranded DNA and DNA quadruplexes. While duplexes are believed to be the main target of cisplatin in vivo, the recently discovered DNA quadruplexes constitute another promising target for anti-tumor drugs owing to their regulatory functions in the cell cycle.
Resumo:
High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.
Resumo:
We present a method to reach electric field intensity as high as 400 kV/cm in liquid argon for cathode-ground distances of several millimeters. This can be achieved by suppressing field emission from the cathode, overcoming limitations that we reported earlier.
Resumo:
Maternal dissociative symptoms which can be comorbid with interpersonal violence-related post-traumatic stress disorder (IPV-PTSD) have been linked to decreased sensitivity and responsiveness to children's emotional communication. This study examined the influence of dissociation on neural activation independently of IPV-PTSD symptom severity when mothers watch video-stimuli of their children during stressful and non-stressful mother-child interactions. Based on previous observations in related fields, we hypothesized that more severe comorbid dissociation in IPV-PTSD would be associated with lower limbic system activation and greater neural activity in regions of the emotion regulation circuit such as the medial prefrontal cortex and dorsolateral prefrontal cortex (dlPFC). Twenty mothers (of children aged 12-42 months), with and without IPV-PTSD watched epochs showing their child during separation and play while undergoing functional magnetic resonance imaging (fMRI). Multiple regression indicated that when mothers diagnosed with IPV-PTSD watched their children during separation compared to play, dissociative symptom severity was indeed linked to lowered activation within the limbic system, while greater IPV-PTSD symptom severity was associated with heightened limbic activity. Concerning emotion regulation areas, there was activation associated to dissociation in the right dlPFC. Our results are likely a neural correlate of affected mothers' reduced capacity for sensitive responsiveness to their young child following exposure to interpersonal stress, situations that are common in day-to-day parenting.
Resumo:
The S0 ↔ S1 spectra of the mild charge-transfer (CT) complexes perylene·tetrachloroethene (P·4ClE) and perylene·(tetrachloroethene)2 (P·(4ClE)2) are investigated by two-color resonant two-photon ionization (2C-R2PI) and dispersed fluorescence spectroscopy in supersonic jets. The S0 → S1 vibrationless transitions of P·4ClE and P·(4ClE)2 are shifted by δν = −451 and −858 cm–1 relative to perylene, translating to excited-state dissociation energy increases of 5.4 and 10.3 kJ/mol, respectively. The red shift is ∼30% larger than that of perylene·trans-1,2-dichloroethene; therefore, the increase in chlorination increases the excited-state stabilization and CT character of the interaction, but the electronic excitation remains largely confined to the perylene moiety. The 2C-R2PI and fluorescence spectra of P·4ClE exhibit strong progressions in the perylene intramolecular twist (1au) vibration (42 cm–1 in S0 and 55 cm–1 in S1), signaling that perylene deforms along its twist coordinate upon electronic excitation. The intermolecular stretching (Tz) and internal rotation (Rc) vibrations are weak; therefore, the P·4ClE intermolecular potential energy surface (IPES) changes little during the S0 ↔ S1 transition. The minimum-energy structures and inter- and intramolecular vibrational frequencies of P·4ClE and P·(4ClE)2 are calculated with the dispersion-corrected density functional theory (DFT) methods B97-D3, ωB97X-D, M06, and M06-2X and the spin-consistent-scaled (SCS) variant of the approximate second-order coupled-cluster method, SCS-CC2. All methods predict the global minima to be π-stacked centered coplanar structures with the long axis of tetrachloroethene rotated by τ ≈ 60° relative to the perylene long axis. The calculated binding energies are in the range of −D0 = 28–35 kJ/mol. A second minimum is predicted with τ ≈ 25°, with ∼1 kJ/mol smaller binding energy. Although both monomers are achiral, both the P·4ClE and P·(4ClE)2 complexes are chiral. The best agreement for adiabatic excitation energies and vibrational frequencies is observed for the ωB97X-D and M06-2X DFT methods.
Resumo:
Out-of-body experiences (OBEs) are illusory perceptions of one's body from an elevated disembodied perspective. Recent theories postulate a double disintegration process in the personal (visual, proprioceptive and tactile disintegration) and extrapersonal (visual and vestibular disintegration) space as the basis of OBEs. Here we describe a case which corroborates and extends this hypothesis. The patient suffered from peripheral vestibular damage and presented with OBEs and lucid dreams. Analysis of the patient's behaviour revealed a failure of visuo-vestibular integration and abnormal sensitivity to visuo-tactile conflicts that have previously been shown to experimentally induce out-of-body illusions (in healthy subjects). In light of these experimental findings and the patient's symptomatology we extend an earlier model of the role of vestibular signals in OBEs. Our results advocate the involvement of subcortical bodily mechanisms in the occurrence of OBEs.
Resumo:
In hemodialysis patients, radiographic imaging with iodinated contrast medium (ICM) application plays a central role in the diagnosis and/or follow-up of disease-related conditions. Therefore, safety aspects concerning ICM administration and radiation exposure have a great impact on this group of patients. Current hardware and software improvements including the design and synthesis of modern contrast compounds allow the use of very small amounts of ICM in concert with low radiation exposure. Undesirable ICM side effects are divided into type A (predictable reactions such as heat feeling, headache, and contrast-induced acute kidney injury, for example) and type B (nonpredictable or hypersensitivity) reactions; this chapter deals with the latter. The first onset cannot be prevented. To prevent hypersensitivity upon reexposure of ICM, an allergological workup is recommended. If this is not possible and ICM is necessary, the patient should receive a premedication (H1 antihistamine with or without corticosteroids). Current imaging hardware and software improvements (e.g. such as additional filtration of the X-ray beam) allow the use of very small amount of ICM and small X-ray doses. Proper communication among the team involved in the treatment of a patient may allow to apply imaging protocols and efficient imaging strategies limiting radiation exposure to a minimum. Practical recommendations will guide the reader how to use radiation and ICM efficiently to improve both patient and staff safety.
Resumo:
The purpose of this study was to examine the relationship between various adverse childhood experiences, alexithymia, and dissociation in predicting nonsuicidal self-injury (NSSI) in an inpatient sample of female adolescents. Seventy-two adolescents (aged 14–18 years) with NSSI disorder (n=46) or mental disorders without NSSI (n=26) completed diagnostic interviews and self-report measures to assess NSSI disorder according to the DSM-5 criteria, childhood maltreatment, alexithymia, and dissociation. Alexithymia and dissociation were highly prevalent in both study groups. Multivariate logistic regression analyses indicated that only alexithymia was a significant predictor for NSSI, whereas childhood maltreatment and dissociation had no predictive influence. The association between alexithymia and NSSI emphasizes the significance of emotion regulation training for female adolescents with NSSI. Efforts to reduce NSSI behavior should therefore foster skills to heighten the perception and recognition of one’s own emotions.