22 resultados para immobilized and dissolving


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulations based on plans for a deep geothermal system in Basel, Switzerland are used here to understand chemical processes that occur in an initially dry granitoid reservoir during hydraulic stimulation and long-term water circulation to extract heat. An important question regarding the sustainability of such enhanced geothermal systems (EGS), is whether water–rock reactions will eventually lead to clogging of flow paths in the reservoir and thereby reduce or even completely block fluid throughput. A reactive transport model allows the main chemical reactions to be predicted and the resulting evolution of porosity to be tracked over the expected 30-year operational lifetime of the system. The simulations show that injection of surface water to stimulate fracture permeability in the monzogranite reservoir at 190 °C and 5000 m depth induces redox reactions between the oxidised surface water and the reduced wall rock. Although new calcite, chlorite, hematite and other minerals precipitate near the injection well, their volumes are low and more than compensated by those of the dissolving wall-rock minerals. Thus, during stimulation, reduction of injectivity by mineral precipitation is unlikely. During the simulated long-term operation of the system, the main mineral reactions are the hydration and albitization of plagioclase, the alteration of hornblende to an assemblage of smectites and chlorites and of primary K-feldspar to muscovite and microcline. Within a closed-system doublet, the composition of the circulated fluid changes only slightly during its repeated passage through the reservoir, as the wall rock essentially undergoes isochemical recrystallization. Even after 30 years of circulation, the calculations show that porosity is reduced by only ∼0.2%, well below the expected fracture porosity induced by stimulation. This result suggests that permeability reduction owing to water–rock interaction is unlikely to jeopardize the long-term operation of deep, granitoid-hosted EGS systems. A peculiarity at Basel is the presence of anhydrite as fracture coatings at ∼5000 m depth. Simulated exposure of the circulating fluid to anhydrite induces a stronger redox disequilibrium in the reservoir, driving dissolution of ferrous minerals and precipitation of ferric smectites, hematite and pyrite. However, even in this scenario the porosity reduction is at most 0.5%, a value which is unproblematic for sustainable fluid circulation through the reservoir.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on litter mass and litterfall data, decomposition rates for leaves were found to be fast (k = 3.3) and the turnover times short (3.6 mo) on the low-nutrient sandy soils of Korup. Leaf litter of four ectomycorrhizal tree species (Berlinia bracteosa, Didelotia africana, Microberlinia bisulcata and Tetraberlinia bifoliolata) and of three non-ectomycorrhizal species (Cola verticillata, Oubanguia alata and Strephonema pseudocola) from Korup were left to decompose in 2-mm mesh bags on the forest floor in three plots of each of two forest types forest of low (LEM) and high (HEM) abundance of ectomycorrhizal (caesalp) trees. The litter of the ectomycorrhizal species decayed at a significantly slower rate than that of the non-ectomycorrhizal species, although the former were richer in P and N concentrations of the start. Disappearance rates of the litter layer showed a similar trend. Ectomycorrhizal species immobilized less N, but mineralized more P, than non-ectomycorrhizal species. Differences between species groups in K, Mg and Ca mineralization were negligible. Effect of forest type was clear only for Mg: mineralization of Mg was faster in the HEM than LEM plots, a pattern repeated across all species. This difference was attributed to a much more prolific fine root mat in the HEM than LEM forest. The relatively fast release of P from the litter of the ectomycorrhizal species suggests that the mat must allow an efficient uptake to maintain P in the forest ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bioelectrocatalytic (oxygen reduction reaction, ORR) properties of the multicopper oxidase CueO immobilized on gold electrodes were investigated. Macroscopic electrochemical techniques were combined with in situ scanning tunneling microscopy (STM) and surface-enhanced Raman spectroscopy at the ensemble and at the single-molecule level. Self-assembled monolayer of mercaptopropionic acid, cysteamine, and p-aminothiophenol were chosen as redox mediators. The highest ORR activity was observed for the protein attached to amino-terminated adlayers. In situ STM experiments revealed that the presence of oxygen causes distinct structure and electronic changes in the metallic centers of the enzyme, which determine the rate of intramolecular electron transfer and, consequently, affect the rate of electron tunneling through the protein. Complementary Raman spectroscopy experiments provided access for monitoring structural changes in the redox state of the type 1 copper center of the immobilized enzyme during the CueO-catalyzed oxygen reduction cycle. These results unequivocally demonstrate the existence of a direct electronic communication between the electrode substrate and the type 1 copper center.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-dimensional dynamic computer simulation was employed to investigate the separation and migration order change of ketoconazole enantiomers at low pH in presence of increasing amounts of (2-hydroxypropyl)-β-cyclodextrin (OHP-β-CD). The 1:1 interaction of ketoconazole with the neutral cyclodextrin was simulated under real experimental conditions and by varying input parameters for complex mobilities and complexation constants. Simulation results obtained with experimentally determined apparent ionic mobilities, complex mobilities, and complexation constants were found to compare well with the calculated separation selectivity and experimental data. Simulation data revealed that the migration order of the ketoconazole enantiomers at low (OHP-β-CD) concentrations (i.e. below migration order inversion) is essentially determined by the difference in complexation constants and at high (OHP-β-CD) concentrations (i.e. above migration order inversion) by the difference in complex mobilities. Furthermore, simulations with complex mobilities set to zero provided data that mimic migration order and separation with the chiral selector being immobilized. For the studied CEC configuration, no migration order inversion is predicted and separations are shown to be quicker and electrophoretic transport reduced in comparison to migration in free solution. The presented data illustrate that dynamic computer simulation is a valuable tool to study electrokinetic migration and separations of enantiomers in presence of a complexing agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge–discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g−1 at a current density of 10 μA cm−2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functioning and services of Central European forests are threatened by global change and a loss of biodiversity. Nutrient cycling as a key forest function is affected by biotic drivers (e.g., dominant tree species, understory plants, soil organisms) that interact with abiotic conditions (e.g., climate, soil properties). In contrast to grassland ecosystems, evidence for the relationship of nutrient cycles and biodiversity in forests is scarce because the structural complexity of forests limits experimental control of driving factors. Alternatively, observational studies along gradients in abiotic conditions and biotic properties may elucidate the role of biodiversity for forest nutrient cycles. This thesis aims to improve the understanding of the functional importance of biodiversity for nutrient cycles in forests by analyzing water-bound fluxes of nitrogen (N) and phosphorus (P) along gradients in biodiversity in three regions of Germany. The tested hypotheses included: (1) temperate forest canopies retain atmospheric N and retention increases with increasing plant diversity, (2) N release from organic layers increases with resource availability and population size of decomposers but N leaching decreases along a gradient in plant diversity, (3) P leaching from forest canopies increases with improved P supply from recalcitrant P fractions by a more diverse ectomycorrhizal fungal community. In the canopies of 27 forest stands from three regions, 16 % to 51 % of atmospheric N inputs were retained. Regional differences in N retention likely resulted from different in N availability in the soil. Canopy N retention was greater in coniferous than in beech forests, but this was not the case on loessderived soils. Nitrogen retention increased with increasing tree and shrub diversity which suggested complementary aboveground N uptake. The strength of the diversity effect on canopy N uptake differed among regions and between coniferous and deciduous forests. The N processing in the canopy directly coupled back to N leaching from organic layers in beech forests because throughfall-derived N flushed almost completely through the mull-type organic layers at the 12 studied beech sites. The N release from organic layers increased with stand basal area but was rather low (< 10 % of annual aboveground litterfall) because of a potentially high microbial N immobilization and intensive incorporation of litter into the mineral soil by bioturbation. Soil fauna biomass stimulated N mineralization through trophic interactions with primary producers and soil microorganisms. Both gross and net leaching from organic layers decreased with increasing plant diversity. Especially the diversity but not the cover of herbs increased N uptake. In contrast to N, P was leached from the canopy. Throughfall-derived P was also flushed quickly through the mull-type organic layers and leached P was predominantly immobilized in non directly plant-available P fractions in the mineral soil. Concentrations of plant-available phosphate in mineral soil solution were low and P leaching from the canopy increased with increasing concentrations of the moderately labile P fraction in soil and increasing ectomycorrhiza diversity while leaf C:P ratios decreased. This suggested that tree P supply benefited from complementary mining of diverse mycorrhizal communities for recalcitrant P. Canopy P leaching increased in years with pronounced spring drought which could lead to a deterioration of P supply by an increasing frequency of drought events. This thesis showed that N and P cycling in Central European forests is controlled by a complex interplay of abiotic site conditions with biological processes mediated by various groups of organisms, and that diverse plant communities contribute to tightening the N cycle in Central European forests and that diverse mycorrhizal communities improve the limited P availability. Maintaining forest biodiversity seems essential to ensure forest services in the light of environmental change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computer simulation study describing the electrophoretic separation and migration of methadone enantiomers in presence of free and immobilized (2-hydroxypropyl)-β-CD is presented. The 1:1 interaction of methadone with the neutral CD was simulated by using experimentally determined mobilities and complexation constants for the complexes in a low-pH BGE comprising phosphoric acid and KOH. The use of complex mobilities represents free solution conditions with the chiral selector being a buffer additive, whereas complex mobilities set to zero provide data that mimic migration and separation with the chiral selector being immobilized, that is CEC conditions in absence of unspecific interaction between analytes and the chiral stationary phase. Simulation data reveal that separations are quicker, electrophoretic displacement rates are reduced, and sensitivity is enhanced in CEC with on-column detection in comparison to free solution conditions. Simulation is used to study electrophoretic analyte behavior at the interface between sample and the CEC column with the chiral selector (analyte stacking) and at the rear end when analytes leave the environment with complexation (analyte destacking). The latter aspect is relevant for off-column analyte detection in CEC and is described here for the first time via the dynamics of migrating analyte zones. Simulation provides insight into means to counteract analyte dilution at the column end via use of a BGE with higher conductivity. Furthermore, the impact of EOF on analyte migration, separation, and detection for configurations with the selector zone being displaced or remaining immobilized under buffer flow is simulated. In all cases, the data reveal that detection should occur within or immediately after the selector zone.