160 resultados para computer assisted spine surgery (CASS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using navigation systems in general orthopaedic surgery and, in particular, knee replacement is becoming more and more accepted. This paper describes the basic technological concepts of modern computer assisted surgical systems. It explains the variation in currently available systems and outlines research activities that will potentially influence future products. In general, each navigation system is defined by three components: (1) the therapeutic object is the anatomical structure that is operated on using the navigation system, (2) the virtual object represents an image of the therapeutic object, with radiological images or computer generated models potentially being used, and (3) last but not least, the navigator acquires the spatial position and orientation of instruments and anatomy thus providing the necessary data to replay surgical action in real-time on the navigation system's screen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Computer-assisted navigation is increasingly used in functional endoscopic sinus surgery (FESS) to prevent injury to vital structures, necessitating preparative CT and, thus, radiation exposure. The purpose of our study was to investigate currently used radiation doses for CT in computer-assisted navigation in sinus surgery (CAS-CT) and to assess minimal doses required. MATERIALS AND METHODS: A questionnaire inquiring about dose parameters used for CAS-CT was sent to 30 radiologic institutions. The feasibility of low-dose registration was tested with a phantom. The influence of CAS-CT dose on technical accuracy and on the practical performance of 5 ear, nose, and throat (ENT) surgeons was evaluated with cadaver heads. RESULTS: The questionnaire response rate was 63%. Variation between minimal and maximal dose used for CAS-CT was 18-fold. Phantom registration was possible with doses as low as 1.1 mGy. No dose dependence on technical accuracy was found. ENT surgeons were able to identify anatomic landmarks on scans with a dose as low as 3.1 mGy. CONCLUSIONS: The vast dose difference between institutions mirrors different attitudes toward image quality and radiation-protection issues rather than being technically founded, and many patients undergo CAS-CT at higher doses than necessary. The only limit for dose reduction in CT for computer-assisted endoscopic sinus surgery is the ENT surgeon's ability to cope with impaired image quality, whereas there is no technically justified lower dose limit. We recommend, generally, doses used for the typical diagnostic low-dose sinus CT (120 kV/20-50 mAs). When no diagnostic image quality is needed, even a reduction down to a third is possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the use of computer-assisted designed and manufactured (CAD/CAM) orbital wall and floor implants for late reconstruction of extensive orbital fractures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in tissue-engineered cartilage open the door to new clinical treatments of joint lesions. Common to all therapies with in-vitro-engineered autografts is the need for optimal fit of the construct to allow screwless implantation and optimal integration into the live joint. Computer-assisted surgery (CAS) techniques are prime candidates to ensure the required accuracy, while at the same time simplifying the procedure. A pilot study has been conducted aiming at assembling a new set of methods to support ankle joint arthroplasty using bioengineered autografts. Computer assistance allows planning of the implant shape on a computed tomography (CT) image, manufacturing the construct according to the plan, and interoperatively navigating the surgical tools for implantation. A rotational symmetric model of the joint surface was used to avoid segmentation of the CT image; new software was developed to determine the joint axis and make the implant shape parameterizable. A complete cycle of treatment from planning to operation was conducted on a human cadaveric foot, thus proving the feasibility of computer-assisted arthroplasty using bioengineered autografts