32 resultados para cloud computing resources
Resumo:
The Mobile Cloud Networking project develops among others, several virtualized services and applications, in particular: (1) IP Multimedia Subsystem as a Service that gives the possibility to deploy a virtualized and on-demand instance of the IP Multimedia Subsystem platform, (2) Digital Signage Service as a Service that is based on a re-designed Digital Signage Service architecture, adopting the cloud computing principles, and (3) Information Centric Networking/Content Delivery Network as a Service that is used for distributing, caching and migrating content from other services. Possible designs for these virtualized services and applications have been identified and are being implemented. In particular, the architectures of the mentioned services were specified, adopting cloud computing principles, such as infrastructure sharing, elasticity, on-demand and pay-as-you-go. The benefits of Reactive Programming paradigm are presented in the context of Interactive Cloudified Digital Signage services in a Mobile Cloud Platform, as well as the benefit of interworking between different Mobile Cloud Networking Services as Digital Signage Service and Content Delivery Network Service for better performance of Video on Demand content deliver. Finally, the management of Service Level Agreements and the support of rating, charging and billing has also been considered and defined.
Resumo:
Long Term Evolution (LTE) represents the fourth generation (4G) technology which is capable of providing high data rates as well as support of high speed mobility. The EU FP7 Mobile Cloud Networking (MCN) project integrates the use of cloud computing concepts in LTE mobile networks in order to increase LTE's performance. In this way a shared distributed virtualized LTE mobile network is built that can optimize the utilization of virtualized computing, storage and network resources and minimize communication delays. Two important features that can be used in such a virtualized system to improve its performance are the user mobility and bandwidth prediction. This paper introduces the architecture and challenges that are associated with user mobility and bandwidth prediction approaches in virtualized LTE systems.
Resumo:
Mobile networks usage rapidly increased over the years, with great consequences in terms of performance requirements. In this paper, we propose mechanisms to use Information-Centric Networking to perform load balancing in mobile networks, providing content delivery over multiple radio technologies at the same time and thus efficiently using resources and improving the overall performance of content transfer. Meaningful results were obtained by comparing content transfer over single radio links with typical strategies to content transfer over multiple radio links with Information-Centric Networking load balancing. Results demonstrate that Information-Centric Networking load balancing increases the performance and efficiency of 3GPP Long Term Evolution mobile networks while greatly improving the network perceived quality for end users.
Resumo:
Abstract Mobile Edge Computing enables the deployment of services, applications, content storage and processing in close proximity to mobile end users. This highly distributed computing environment can be used to provide ultra-low latency, precise positional awareness and agile applications, which could significantly improve user experience. In order to achieve this, it is necessary to consider next-generation paradigms such as Information-Centric Networking and Cloud Computing, integrated with the upcoming 5th Generation networking access. A cohesive end-to-end architecture is proposed, fully exploiting Information-Centric Networking together with the Mobile Follow-Me Cloud approach, for enhancing the migration of content-caches located at the edge of cloudified mobile networks. The chosen content-relocation algorithm attains content-availability improvements of up to 500 when a mobile user performs a request and compared against other existing solutions. The performed evaluation considers a realistic core-network, with functional and non-functional measurements, including the deployment of the entire system, computation and allocation/migration of resources. The achieved results reveal that the proposed architecture is beneficial not only from the users’ perspective but also from the providers point-of-view, which may be able to optimize their resources and reach significant bandwidth savings.
Resumo:
Localization is information of fundamental importance to carry out various tasks in the mobile robotic area. The exact degree of precision required in the localization depends on the nature of the task. The GPS provides global position estimation but is restricted to outdoor environments and has an inherent imprecision of a few meters. In indoor spaces, other sensors like lasers and cameras are commonly used for position estimation, but these require landmarks (or maps) in the environment and a fair amount of computation to process complex algorithms. These sensors also have a limited field of vision. Currently, Wireless Networks (WN) are widely available in indoor environments and can allow efficient global localization that requires relatively low computing resources. However, the inherent instability in the wireless signal prevents it from being used for very accurate position estimation. The growth in the number of Access Points (AP) increases the overlap signals areas and this could be a useful means of improving the precision of the localization. In this paper we evaluate the impact of the number of Access Points in mobile nodes localization using Artificial Neural Networks (ANN). We use three to eight APs as a source signal and show how the ANNs learn and generalize the data. Added to this, we evaluate the robustness of the ANNs and evaluate a heuristic to try to decrease the error in the localization. In order to validate our approach several ANNs topologies have been evaluated in experimental tests that were conducted with a mobile node in an indoor space.
Resumo:
BEAMnrc, a code for simulating medical linear accelerators based on EGSnrc, has been bench-marked and used extensively in the scientific literature and is therefore often considered to be the gold standard for Monte Carlo simulations for radiotherapy applications. However, its long computation times make it too slow for the clinical routine and often even for research purposes without a large investment in computing resources. VMC++ is a much faster code thanks to the intensive use of variance reduction techniques and a much faster implementation of the condensed history technique for charged particle transport. A research version of this code is also capable of simulating the full head of linear accelerators operated in photon mode (excluding multileaf collimators, hard and dynamic wedges). In this work, a validation of the full head simulation at 6 and 18 MV is performed, simulating with VMC++ and BEAMnrc the addition of one head component at a time and comparing the resulting phase space files. For the comparison, photon and electron fluence, photon energy fluence, mean energy, and photon spectra are considered. The largest absolute differences are found in the energy fluences. For all the simulations of the different head components, a very good agreement (differences in energy fluences between VMC++ and BEAMnrc <1%) is obtained. Only a particular case at 6 MV shows a somewhat larger energy fluence difference of 1.4%. Dosimetrically, these phase space differences imply an agreement between both codes at the <1% level, making VMC++ head module suitable for full head simulations with considerable gain in efficiency and without loss of accuracy.
Resumo:
Current advanced cloud infrastructure management solutions allow scheduling actions for dynamically changing the number of running virtual machines (VMs). This approach, however, does not guarantee that the scheduled number of VMs will properly handle the actual user generated workload, especially if the user utilization patterns will change. We propose using a dynamically generated scaling model for the VMs containing the services of the distributed applications, which is able to react to the variations in the number of application users. We answer the following question: How to dynamically decide how many services of each type are needed in order to handle a larger workload within the same time constraints? We describe a mechanism for dynamically composing the SLAs for controlling the scaling of distributed services by combining data analysis mechanisms with application benchmarking using multiple VM configurations. Based on processing of multiple application benchmarks generated data sets we discover a set of service monitoring metrics able to predict critical Service Level Agreement (SLA) parameters. By combining this set of predictor metrics with a heuristic for selecting the appropriate scaling-out paths for the services of distributed applications, we show how SLA scaling rules can be inferred and then used for controlling the runtime scale-in and scale-out of distributed services. We validate our architecture and models by performing scaling experiments with a distributed application representative for the enterprise class of information systems. We show how dynamically generated SLAs can be successfully used for controlling the management of distributed services scaling.
Resumo:
Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.
Resumo:
Recently telecommunication industry benefits from infrastructure sharing, one of the most fundamental enablers of cloud computing, leading to emergence of the Mobile Virtual Network Operator (MVNO) concept. The most momentous intents by this approach are the support of on-demand provisioning and elasticity of virtualized mobile network components, based on data traffic load. To realize it, during operation and management procedures, the virtualized services need be triggered in order to scale-up/down or scale-out/in an instance. In this paper we propose an architecture called MOBaaS (Mobility and Bandwidth Availability Prediction as a Service), comprising two algorithms in order to predict user(s) mobility and network link bandwidth availability, that can be implemented in cloud based mobile network structure and can be used as a support service by any other virtualized mobile network services. MOBaaS can provide prediction information in order to generate required triggers for on-demand deploying, provisioning, disposing of virtualized network components. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operation, as well. Through the preliminary experiments with the prototype implementation on the OpenStack platform, we evaluated and confirmed the feasibility and the effectiveness of the prediction algorithms and the proposed architecture.
Resumo:
The increasing interest in autonomous coordinated driving and in proactive safety services, exploiting the wealth of sensing and computing resources which are gradually permeating the urban and vehicular environments, is making provisioning of high levels of QoS in vehicular networks an urgent issue. At the same time, the spreading model of a smart car, with a wealth of infotainment applications, calls for architectures for vehicular communications capable of supporting traffic with a diverse set of performance requirements. So far efforts focused on enabling a single specific QoS level. But the issues of how to support traffic with tight QoS requirements (no packet loss, and delays inferior to 1ms), and of designing a system capable at the same time of efficiently sustaining such traffic together with traffic from infotainment applications, are still open. In this paper we present the approach taken by the CONTACT project to tackle these issues. The goal of the project is to investigate how a VANET architecture, which integrates content-centric networking, software-defined networking, and context aware floating content schemes, can properly support the very diverse set of applications and services currently envisioned for the vehicular environment.
Resumo:
The evolution of wireless access technologies and mobile devices, together with the constant demand for video services, has created new Human-Centric Multimedia Networking (HCMN) scenarios. However, HCMN poses several challenges for content creators and network providers to deliver multimedia data with an acceptable quality level based on the user experience. Moreover, human experience and context, as well as network information play an important role in adapting and optimizing video dissemination. In this paper, we discuss trends to provide video dissemination with Quality of Experience (QoE) support by integrating HCMN with cloud computing approaches. We identified five trends coming from such integration, namely Participatory Sensor Networks, Mobile Cloud Computing formation, QoE assessment, QoE management, and video or network adaptation.
Resumo:
Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations.
Resumo:
BACKGROUND The coping resources questionnaire for back pain (FBR) uses 12 items to measure the perceived helpfulness of different coping resources (CRs, social emotional support, practical help, knowledge, movement and relaxation, leisure and pleasure, spirituality and cognitive strategies). The aim of the study was to evaluate the instrument in a clinical patient sample assessed in a primary care setting. SAMPLE AND METHODS The study was a secondary evaluation of empirical data from a large cohort study in general practices. The 58 participating primary care practices recruited patients who reported chronic back pain in the consultation. Besides the FBR and a pain sketch, the patients completed scales measuring depression, anxiety, resilience, sociodemographic factors and pain characteristics. To allow computing of retested parameters the FBR was sent to some of the original participants again after 6 months (90% response rate). We calculated consistency and retest reliability coefficients as well as correlations between the FBR subscales and depression, anxiety and resilience scores to account for validity. By means of a cluster analysis groups with different resource profiles were formed. Results. RESULTS For the study 609 complete FBR baseline data sets could be used for statistical analysis. The internal consistency scores ranged fromα=0.58 to α=0.78 and retest reliability scores were between rTT=0.41 and rTT=0.63. Correlation with depression, fear and resilience ranged from r=-0.38 to r=0.42. The cluster analysis resulted in four groups with relatively homogenous intragroup profiles (high CRs, low spirituality, medium CRs, low CRs). The four groups differed significantly in fear and depression (the more inefficient the resources the higher the difference) as well as in resilience (the more inefficient the lower the difference). The group with low CRs also reported permanent pain with no relief. The groups did not otherwise differ. CONCLUSIONS The FBR is an economic instrument that is suitable for practical use e.g. in primary care practices to identify strengths and deficits in the CRs of chronic pain patients that can then be specified in face to face consultation. However, due to the rather low reliability, the use of subscales for profile differentiation and follow-up measurement in individual diagnoses is limited.
Resumo:
We describe a system for performing SLA-driven management and orchestration of distributed infrastructures composed of services supporting mobile computing use cases. In particular, we focus on a Follow-Me Cloud scenario in which we consider mobile users accessing cloud-enable services. We combine a SLA-driven approach to infrastructure optimization, with forecast-based performance degradation preventive actions and pattern detection for supporting mobile cloud infrastructure management. We present our system's information model and architecture including the algorithmic support and the proposed scenarios for system evaluation.
Resumo:
This paper addresses the novel notion of offering a radio access network as a service. Its components may be instantiated on general purpose platforms with pooled resources (both radio and hardware ones) dimensioned on-demand, elastically and following the pay-per-use principle. A novel architecture is proposed that supports this concept. The architecture's success is in its modularity, well-defined functional elements and clean separation between operational and control functions. By moving much processing traditionally located in hardware for computation in the cloud, it allows the optimisation of hardware utilization and reduction of deployment and operation costs. It enables operators to upgrade their network as well as quickly deploy and adapt resources to demand. Also, new players may easily enter the market, permitting a virtual network operator to provide connectivity to its users.