76 resultados para checkpoint kinase 2
Resumo:
We and others found two polymorphic LRRK2 (leucine-rich repeat kinase 2) variants (rs34778348:G>A; p.G2385R and rs33949390:G>C; p.R1628P) associated with Parkinson disease (PD) among Chinese patients, but the common worldwide rs34637584:G>A; p.G2019S mutation, was absent. Focusing exclusively on Han Chinese, we first sequenced the coding regions in young onset and familial PD patients and identified 59 variants. We then examined these variants in 250 patients and 250 control subjects. Among the 17 polymorphic variants, five demonstrated different frequency in cases versus controls and were considered in a larger sample of 1,363 patients and 1,251 control subjects. The relative risk of an individual with both p.G2385R and p.R1628P is about 1.9, and this is reduced to 1.5-1.6 if the individual also carries rs7133914:G>C; p.R1398H or rs7308720:C>A: p.N551K. The risk of a carrier with p.R1628P is largely negated if the individual also carries p.R1398H or p.N551K. In dopaminergic neuronal lines, p.R1398H had significantly lower kinase activity, whereas p.G2385R and p.R1628P showed higher kinase activity than wild type. We provided the first evidence that multiple LRRK2 variants exert an individual effect and together modulate the risk of PD among Chinese.
Resumo:
Neutrophils are terminally differentiated cells with a short life-span due to constitutive apoptosis. Because of these characteristics, genetic manipulation of neutrophils has been difficult, although it is highly desired given the importance of neutrophils in the immune system. Here we demonstrate that transduction of primary human mature neutrophils with enhanced green fluorescent protein (eGFP)-encoding lentiviral particles results in GFP-containing cells as previously reported. Yet, our data further show that GFP expression in neutrophils upon transduction is largely due to protein transfer, a process called lentiviral pseudotransduction, and not due to bona fide transduction. Thus, inhibition of viral genome integration by the reverse transcriptase inhibitor 3'-azido-3'-deoxythymidine (AZT) or of protein biosynthesis by cycloheximide (CHX) did not abolish GFP levels in transduced neutrophils. Importantly, lentiviral pseudotransduction of the enzyme death-associated protein kinase 2 (DAPK2) into primary human mature neutrophils resulted in increased protein levels, but not enzymatic functionality. Based on our data and previous reports of unspecific viral effects on immune cells following lentiviral transduction, we discourage scientists to use lentiviral transduction methods to manipulate primary mature neutrophils.
Resumo:
Morbidity and mortality of myocardial infarction remains significant with resulting left ventricular function presenting as a major determinant of clinical outcome. Protecting the myocardium against ischemia reperfusion injury has become a major therapeutic goal and the identification of key signaling pathways has paved the way for various interventions, but until now with disappointing results. This article describes the recently discovered new role of G-protein-coupled receptor kinase-2 (GRK2), which is known to critically influence the development and progression of heart failure, in acute myocardial injury. This article focuses on potential applications of the GRK2 peptide inhibitor βARKct in ischemic myocardial injury, the use of GRK2 as a biomarker in acute myocardial infarction and discusses the challenges of translating GRK2 inhibition as a cardioprotective strategy to a possible future clinical application.
Resumo:
The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.
Resumo:
Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.
Resumo:
CONTEXT AND OBJECTIVE: A single missense mutation in the GH-1 gene converting codon 77 from arginine (R) to cysteine (C) yields a mutant GH-R77C peptide, which was described as natural GH antagonist. DESIGN, SETTING, AND PATIENTS: Heterozygosity for GH-R77C/wt-GH was identified in a Syrian family. The index patient, a boy, was referred for assessment of his short stature (-2.5 SD score) and partial GH insensitivity was diagnosed. His mother and grandfather were also carrying the same mutation and showed partial GH insensitivity with modest short stature. INTERVENTIONS AND RESULTS: Functional characterization of the GH-R77C was performed through studies of GH receptor binding and activation of Janus kinase 2/Stat5 pathway. No differences in the binding affinity and bioactivity between wt-GH and GH-R77C were found. Similarly, cell viability and proliferation after expression of both GH peptides in AtT-20 cells were identical. Quantitative confocal microscopy analysis revealed no significant difference in the extent of subcellular colocalization between wt-GH and GH-R77C with endoplasmic reticulum, Golgi, or secretory vesicles. Furthermore studies demonstrated a reduced capability of GH-R77C to induce GHR/GHBP gene transcription rate when compared with wt-GH. CONCLUSION: Reduced GH receptor/GH-binding protein expression might be a possible cause for the partial GH insensitivity with delay in growth and pubertal development found in our patients. In addition, this group of patients deserves further attention because they could represent a distinct clinical entity underlining that an altered GH peptide may also have a direct impact on GHR/GHBP gene expression causing partial GH insensitivity.
Resumo:
Death-associated protein kinase 2 (DAPK2) belongs to a family of proapoptotic Ca(2+)/calmodulin-regulated serine/threonine kinases. We recently identified DAPK2 as an enhancing factor during granulocytic differentiation. To identify transcriptional DAPK2 regulators, we cloned 2.7 kb of the 5'-flanking region of the DAPK2 gene. We found that E2F1 and Krüppel-like factor 6 (KLF6) strongly activate the DAPK2 promoter. We mapped the E2F1 and KLF6 responsive elements to a GC-rich region 5' of exon 1 containing several binding sites for KLF6 and Sp1 but not for E2F. Moreover, we showed that transcriptional activation of DAPK2 by E2F1 and KLF6 is dependent on Sp1 using Sp1/KLF6-deficient insect cells, mithramycin A treatment to block Sp1-binding or Sp1 knockdown cells. Chromatin immunoprecipitation revealed recruitment of Sp1 and to lesser extent that of E2F1 and KLF6 to the DAPK2 promoter. Activation of E2F1 in osteosarcoma cells led to an increase of endogenous DAPK2 paralleled by cell death. Inhibition of DAPK2 expression resulted in significantly reduced cell death upon E2F1 activation. Similarly, KLF6 expression in H1299 cells increased DAPK2 levels accompanied by cell death that is markedly decreased upon DAPK2 knockdown. Moreover, E2F1 and KLF6 show cooperation in activating the DAPK2 promoter. In summary, our findings establish DAPK2 as a novel Sp1-dependent target gene for E2F1 and KLF6 in cell death response.
Resumo:
BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is resistant to chemotherapy. We reported that sirolimus, an mTOR inhibitor, has antiangiogenic properties in HCC. Since antiangiogenic therapy may enhance chemotherapy effects, we tested the antitumorigenic properties of sirolimus combined with doxorubicin in experimental HCC. METHODS: Morris Hepatoma (MH) cells were implanted into livers of syngeneic rats. Animals were assigned to sirolimus, pegylated liposomal doxorubicin, both combined or control groups. Tumoral growth was followed by MRI. Antiangiogenic effects were assessed by CD31 immunostaining and capillary tube formation assays. Cell proliferation was monitored in vitro by thymidine incorporation. Expression of p21 and phosphorylated MAPKAP kinase-2 was quantified by immunoblotting. RESULTS: Animals treated with the combination developed smaller tumors with decreased tumor microvessel density compared to animals that received monotherapies. In vitro, inhibition of mTOR further impaired capillary formation in the presence of doxorubicin. Doxorubicin reduced endothelial cell proliferation; inhibition of mTOR accentuated this effect. Doxorubicin stimulated p21 expression and the phosphorylation of MAPKAP kinase-2 in endothelial cells. Addition of mTOR inhibitor down-regulated p21, but did not decrease MAPKAP kinase-2 phosphorylation. CONCLUSIONS: Sirolimus has additive antitumoral and antiangiogenic effects when administered with doxorubicin. These findings offer a rationale for combining mTOR inhibitors with chemotherapy in HCC treatment.
Resumo:
Equine insect bite hypersensitivity (IBH) is a seasonal IgE-mediated dermatosis caused by bites of insects of the genus Culicoides. A familial predisposition for the disease has been shown but, except for the MHC, the genes involved have not been identified so far. An immunogenomic analysis of IBH was performed in a model population of Old Kladruby horses, all living in the same environment. Clinical signs of IBH were used as phenotypic manifestation of IBH. Furthermore, total serum IgE levels were determined in the sera of these horses and used as an independent phenotypic marker for the immunogenetic analysis. Single nucleotide polymorphisms (SNPs) in candidate immunity-related genes were used for association analyses. Genotypes composed of two to five genes encoding interferon gamma -IFNG, transforming growth factor beta 1 -TGFB1, Janus kinase 2 -JAK2, thymic stromal lymphopoietin -TSLP, and involucrin -IVL were associated with IBH, indicating a role of the genes in the pathogenesis of IBH. These findings were supported by analysis of gene expression in skin biopsies of 15 affected and 15 unaffected horses. Two markers associated with IBH, IFNG and TGFB1, showed differences in mRNA expression in skin biopsies from IBH-affected and non-affected horses (p<0.05). Expression of the gene coding for the CD14 receptor molecule -CD14 was different in skin biopsies at p<0.06. When total IgE levels were treated as binary traits, genotypes of IGHE, ELA-DRA, and IL10/b were associated with this trait. When treated as a continuous trait, total IgE levels were associated with genes IGHE, FCER1A, IL4, IL4R, IL10, IL1RA, and JAK2. This first report on non-MHC genes associated with IBH in horses is thus supported by differences in expression of genes known to play a role in allergy and immunity.
Resumo:
Disruption of desmosomal cadherin adhesion leads to the activation of intracellular signaling pathways that are responsible for blister formation in pemphigus vulgaris (PV). Recent studies corroborate the implication of the p38 mitogen-activated protein kinase in PV blistering via its downstream effector mitogen-activated protein kinase activated protein kinase 2. These insights highlight the key role of cadherins in tissue homeostasis and are expected to change pemphigus management.
Resumo:
BACKGROUND It is unknown why patients with extensive ulcerative colitis (UC) have a higher risk of colorectal cancer compared with patients with left-sided UC. This study characterizes the inflammatory processes in left-sided UC, pancolitis, and UC-associated dysplasia at the transcriptional level to identify potential biomarkers and transcripts of importance for the carcinogenic behavior of chronic inflammation. METHODS The Affymetrix GeneChip Human Genome U133 Plus 2.0 was applied on colonic biopsies from UC patients with left-sided UC, pancolitis, dysplasia, and controls. Reverse transcription polymerase chain reaction and immunohistochemistry were performed for validating selected transcripts in the initial cohort and in 2 independent cohorts of patients with UC. Microarray data were analyzed by principal component analysis, and reverse transcription polymerase chain reaction and immunohistochemistry data by the Wilcoxon's rank-sum test. RESULTS The principal component analysis results revealed separate clusters for left-sided UC, pancolitis, dysplasia, and controls. Close clustering of dysplastic and pancolitic samples indicated similarities in gene expression. Indeed, 101 and 656 parallel upregulated and downregulated transcripts, respectively, were identified in specimens from dysplasia and pancolitis. Validation of selected transcripts hereof identified insulin receptor alpha (INSRA) and MAP kinase interacting serine/threonine kinase 2 (MKNK2) with an enhanced expression in dysplasia compared with left-sided UC and controls, whereas laminin γ2 (LAMC2) was found with a lower expression in dysplasia compared with the remaining 3 groups. CONCLUSIONS This study demonstrates pancolitis and left-sided UC as distinct inflammatory processes at the transcriptional level, and identifies INSRA, MKNK2, and LAMC2 as potential critical transcripts in the inflammation-driven preneoplastic process of UC.
Resumo:
FTY720 (Fingolimod; Gilenya®) is an immune-modulatory prodrug which, after intracellular phosphorylation by sphingosine kinase 2 (SphK2) and export, mimics effects of the endogenous lipid mediator sphingosine-1-phosphate. Fingolimod has been introduced to treat relapsing-remitting multiple sclerosis. However, little has been published about the immune cell membrane penetration and subcellular distribution of FTY720 and FTY720-P. Thus, we applied a newly established LC-MS/MS method to analyze the subcellular distribution of FTY720 and FTY720-P in subcellular compartments of spleen cells of wild type, SphK1- and SphK2-deficient mice. These studies demonstrated that, when normalized to the original cell volume and calculated on molar basis, FTY720 and FTY720-P dramatically accumulated several hundredfold within immune cells reaching micromolar concentrations. The amount and distribution of FTY720 was differentially affected by SphK1- and SphK2-deficiency. On the background of recently described relevant intracellular FTY720 effects in the nanomolar range and the prolonged application in multiple sclerosis, this data showing a substantial intracellular accumulation of FTY720, has to be considered for benefit/risk ratio estimates.
Resumo:
Calreticulin (CALR) is a highly conserved, multifunctional protein involved in a variety of cellular processes including the maintenance of intracellular calcium homeostasis, proper protein folding, differentiation and immunogenic cell death. More recently, a crucial role for CALR in the pathogenesis of certain hematologic malignancies was discovered: in clinical subgroups of acute myeloid leukemia, CALR overexpression mediates a block in differentiation, while somatic mutations have been found in the majority of patients with myeloproliferative neoplasms with nonmutated Janus kinase 2 gene (JAK2) or thrombopoietin receptor gene (MPL). However, the mechanisms underlying CALR promoter activation have insufficiently been investigated so far. By dissecting the core promoter region, we could identify a functional TATA-box relevant for transcriptional activation. In addition, we characterized two evolutionary highly conserved cis-regulatory modules (CRMs) within the proximal promoter each composed of one binding site for the transcription factors SP1 and SP3 as well as for the nuclear transcription factor Y (NFY) and we verified binding of these factors to their cognate sites in vitro and in vivo.
Resumo:
Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade.
Resumo:
Sphingosine kinase 1 (SK1) is a key enzyme in the generation of sphingosine 1-phosphate (S1P) which critically regulates a variety of important cell responses such as proliferation and migration. Therefore, inhibition of SK-1 has been suggested to be an attractive approach to treat tumor growth and metastasis formation.