33 resultados para animal assisted therapy
Resumo:
Advances in human prenatal medicine and molecular genetics have allowed the diagnosis of many genetic diseases early in gestation. In-utero transplantation of allogeneic hematopoietic stem cells (HSC) has been successfully used as a therapy in different animal models and recently also in human fetuses. Unfortunately, clinical success of this novel treatment is limited by the lack of donor cell engraftment in non-immunocompromised hosts and is thus restricted to diseases where the fetus is affected by severe immunodeficiency. Gene therapy using genetically modified autologous HSC circumvents allogeneic HLA barriers and constitutes one of the most promising new approaches to correct genetic deficits in the fetus. Recent developments of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells include the use of new vector constructs and transduction protocols. These improvements open new perspectives for gene therapy in general and for prenatal gene transfer in particular. The fetus may be especially susceptible for successful gene therapy due to the immunologic naiveté of the immature hematopoietic system during gestation, precluding an immune reaction towards the transgene. Ethical issues, in particular those regarding treatment safety, must be taken into account before clinical trials with fetal gene therapy in human pregnancies can be initiated.
Resumo:
The humanized anti-alpha(4) integrin Ab Natalizumab is an effective treatment for relapsing-remitting multiple sclerosis. Natalizumab is thought to exert its therapeutic efficacy by blocking the alpha(4) integrin-mediated binding of circulating immune cells to the blood-brain barrier (BBB). As alpha(4) integrins control other immunological processes, natalizumab may, however, execute its beneficial effects elsewhere. By means of intravital microscopy we demonstrate that natalizumab specifically inhibits the firm adhesion but not the rolling or capture of human T cells on the inflamed BBB in mice with acute experimental autoimmune encephalomyelitis (EAE). The efficiency of natalizumab to block T cell adhesion to the inflamed BBB was found to be more effective in EAE than in acute systemic TNF-alpha-induced inflammation. Our data demonstrate that alpha(4) integrin-mediated adhesion of human T cells to the inflamed BBB during EAE is efficiently blocked by natalizumab and thus provide the first direct in vivo proof of concept of this therapy in multiple sclerosis.
Resumo:
BACKGROUND Besides carpal tunnel and cubital tunnel syndrome, other nerve compression or constriction syndromes exist at the upper extremity. This study was performed to evaluate and summarize our initial experience with endoscopically assisted decompression. MATERIALS AND METHODS Between January 2011 and March 2012, six patients were endoscopically operated for rare compression or hour-glass-like constriction syndrome. This included eight decompressions: four proximal radial nerve decompressions, and two combined proximal median nerve and anterior interosseus nerve decompressions. Surgical technique and functional outcomes are presented. RESULTS There were no intraoperative complications in the series. Endoscopy allowed both identifying and removing all the compressive structures. In one case, the proximal radial neuropathy developed for 10 years without therapy and a massive hour-glass nerve constriction was observed intraoperatively which led us to perform a concurrent complementary tendon transfer to improve fingers and thumb extension. Excellent results were achieved according to the modified Roles and Maudsley classification in five out of six cases. All but one patient considered the results excellent. The poorest responder developed a CRPS II and refused post-operative physiotherapy. CONCLUSION Endoscopically assisted decompression in rare compression syndrome of the upper extremity is highly appreciated by patients and provides excellent functional results. This minimally invasive surgical technique will likely be further described in future clinical studies.
Resumo:
Background: Cardiac shock wave therapy (CSWT) delivered to the myocardium increases capillary density and regional myocardial blood flow in animal experiments. In addition, nonenzymatic nitric oxide production and the upregulation of vascular growth factor's mRNA by CSWT have been described. The aim of the study was therefore to test its potential to relieve symptoms in patients with chronic stable angina pectoris. Methods: Twenty-one patients (mean age 68.2 ± 8.3 years, 19 males) with chronic refractory angina pectoris and evidence of inducible myocardial ischemia during MIBI-SPECT imaging, were randomized into a treatment (n = 11) and a placebo arm (n = 10). The region of exercise-induced ischemia was treated with echocardiographic guidance during nine sessions over a period of 3 months. One session of CSWT consisted of 200 shots/spot (9--12 spots/session) with an energy intensity of 0.09 mJ/mm2. In the control group acoustic simulation was performed without energy application. Medication was kept unchanged during the whole treatment period. Results: In the treatment group, symptoms improved in 9/11 patients, and the ischemic threshold, determined by cardiopulmonary exercise stress testing, increased from 80 ± 28 to 95 ± 28 W (P= 0.036). In the placebo arm, only 2/10 patients reported an improvement and the ischemic threshold remained unchanged (98 ± 23 to 107 ± 23 W; P= 0.141). The items “physical functioning” (P= 0.043), “general health perception” (P= 0.046), and “vitality” (P= 0.035) of the SF-36 questionnaire significantly improved in the treatment arm, whereas in the placebo arm, no significant change was noted. Neither arrhythmias, troponin rise nor complications were observed during treatment. Conclusions: This placebo controlled trial shows a significant improvement in symptoms, quality of life parameters and ischemic threshold during exercise in patients with chronic refractory angina pectoris treated with CSWT. Thus, CSWT represents a new option for the treatment of patients with refractory AP.
Resumo:
Patients with ilio-femoral deep-vein thrombosis (DVT) are at high risk of developing the post-thrombotic syndrome (PTS). In comparison to anticoagulation therapy alone, extended venography-guided catheter-directed thrombolysis without routine stenting of venous stenosis in patients with ilio-femoral DVT is associated with an increased risk of bleeding and a moderate reduction of PTS. We performed a prospective single-centre study to investigate safety, patency and incidence of PTS in patients with acute ilio-femoral DVT treated with fixed-dose ultrasound-assisted catheter-directed thrombolysis (USAT; 20 mg rt-PA during 15 hours) followed by routing stenting of venous stenosis, defined as residual luminal narrowing >50%, absent antegrade flow, or presence of collateral flow at the site of suspected stenosis. A total of 87 patients (age 46 ± 21 years, 60% women) were included. At 15 hours, thrombolysis success ≥50% was achieved in 67 (77%) patients. Venous stenting (mean 1.9 ± 1.3 stents) was performed in 70 (80%) patients, with the common iliac vein as the most frequent stenting site (83%). One major (1%; 95% CI, 0-6%) and 6 minor bleedings (7%; 95%CI, 3-14%) occurred. Primary and secondary patency rates at 1 year were 87% (95% CI, 74-94%) and 96% (95% CI, 88-99%), respectively. At three months, 88% (95% CI, 78-94%) of patients were free from PTS according to the Villalta scale, with a similar rate at one year (94%, 95% CI, 81-99%). In conclusion, a fixed-dose USAT regimen followed by routine stenting of underlying venous stenosis in patients with ilio-femoral DVT was associated with a low bleeding rate, high patency rates, and a low incidence of PTS.
Resumo:
Pulmonary embolism remains a common and potentially life-threatening disease. For patients with intermediate- and high-risk pulmonary embolism, catheter-based revascularization therapy has emerged as potential alternative to systemic thrombolysis or surgical embolectomy. Ultrasound-assisted catheter-directed thrombolysis is a contemporary catheter-based technique and is the focus of the present review. Ultrasound-assisted catheter-directed thrombolysis is more effective in reversing right ventricular dysfunction and dilatation in comparison with anticoagulation alone in patients at intermediate risk. However, a direct comparison of ultrasound-assisted thrombolysis with systemic thrombolysis or surgical thrombectomy is not available. Ultrasound-assisted thrombolysis with initial intrapulmonary thrombolytic bolus may also be effective in high-risk patients, but evidence from randomized trials is not available. This review summarizes current data on ultrasound-assisted thrombolysis for acute pulmonary embolism.
Resumo:
Since October 2011, the enzymatic lysis of Dupuytren's cord was introduced in Switzerland (Xiapex(®), Auxilium Pharmaceuticals, Pfizer). Here we present our first university experience and underline the major role of ultrasound during the injection. Between December 2011 and February 2013, 52 injections were performed to eliminate 43 Dupuytren's cords in 33 patients. The mean age of the patients was 64.4 ± 8.5 years. Complications were documented for each patient. Before, directly after and after a minimum of 6 months post-injection, the contracture of the treated joint was measured with use of a goniometer. The DASH score was evaluated after a minimum of 6 months and the patients were asked to subjectively evaluate the outcome of the treatment (very good, good, mild, poor) and whether they would reiterate it if necessary. Four skin defects, one lymphangitis, and one CRPS were responsible for a complication rate of 18%. There was no infection and no tendon rupture in the series. The mean MCP joint contracture was respectively 36.8 ± 27.4°, 3.5 ± 7.8° (gain of mobility compared to the preoperative situation 33.3°, P<0.001), and 8.4 ± 13.9° (gain 28.4°, P<0.001) respectively before, just after and at the long-term clinical control. The mean PIP joint contracture was respectively 36.5 ± 29.1°, 5.9 ± 6.7° (gain 30.6°, P<0.001), and 15.1 ± 13.8° (gain 21.4°, P<0.001) respectively before injection, just after and at the long-term clinical control. The DASH score decreased from 24 ± 14 to 7 ± 9 (P<0.001). Eighty-one per cent of the patients were satisfied or very satisfied of the treatment. All but two would reiterate the treatment if necessary. Ultrasound is able to target the injection of collagenase in order to reduce complications. The short-term results of this non-invasive therapy are very promising however comparison with conventional procedures is difficult as the long-term results are lacking.
Resumo:
A 15-month-old, spayed female, Bernese mountain dog was presented to the Institute of Small Animal Surgery at the University of Zurich because of chronic left forelimb lameness. The referring veterinarian diagnosed pain in the left shoulder region and had treated the dog with systemic non-steroidal anti-inflammatory drugs and restricted exercise for a two-week period. The follow-up examination revealed only minimal improvement and therefore, the dog was referred for further diagnostic evaluation. Chronic bicipital tenosynovitis and tendinitis of the infraspinatus muscle was diagnosed based on survey radiographs, arthrography, ultrasound, computed tomography (CT), and synovial fluid cytology. The dog underwent three sessions of extracorporeal shockwave therapy and substantial clinical improvement was observed. On follow-up examinations, only mild left forelimb lameness was evident following exercise, and changes in the intertubercular groove and at the supraglenoid tuberosity appeared less active on radiographs and CT. However, six months following treatment, mild degenerative joint disease was apparent.
Resumo:
Species of the family Pasteurellaceae play an important role as primary or opportunistic, predominantly respiratory, pathogens in domestic and wild animals. Some of them cause severe disease with high economic losses in commercial animal husbandry. Hence, rapid and accurate differentiation of Pasteurellaceae is important and signifies a particular challenge to diagnostic laboratories. Identification and differentiation of Pasteurellaceae is mostly done using phenotypic tests or genetic identification based on sequence similarity of housekeeping genes, such as the rrs gene encoding the 16S ribosomal RNA (16S rRNA). Both approaches are time consuming, laborious, and costly, therefore often delaying the final diagnosis of disease or epidemics. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry represents an alternative rapid and reliable method for the differentiation of most members of the family Pasteurellaceae. It is able to differentiate within a few minutes the currently known 18 genera and most of the over 60 species and subspecies of Pasteurellaceae including many members encountered in veterinary diagnostic laboratories. A few closely related species and subspecies that cannot be discriminated by MALDI-TOF are easily identified further by complementary simple tests, such as hemolysis done simultaneously or routinely during pathogen isolation.
Resumo:
Intervertebral disc (IVD) degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encouraging results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium "Where Science meets Clinics", sponsored by the AO Foundation and held in Davos, Switzerland, from September 5-7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imaging methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neuro-genesis. Discogenic pain, originating from "black discs" or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects.
Resumo:
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
Resumo:
OBJECTIVES Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers. METHODS Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed. RESULTS Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology. INTERPRETATION High SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset.
Resumo:
Minimal residual disease (MRD) is a major hurdle in the eradication of malignant tumors. Despite the high sensitivity of various cancers to treatment, some residual cancer cells persist and lead to tumor recurrence and treatment failure. Obvious reasons for residual disease include mechanisms of secondary therapy resistance, such as the presence of mutant cells that are insensitive to the drugs, or the presence of cells that become drug resistant due to activation of survival pathways. In addition to such unambiguous resistance modalities, several patients with relapsing tumors do not show refractory disease and respond again when the initial therapy is repeated. These cases cannot be explained by the selection of mutant tumor cells, and the precise mechanisms underlying this clinical drug resistance are ill-defined. In the current review, we put special emphasis on cell-intrinsic and -extrinsic mechanisms that may explain mechanisms of MRD that are independent of secondary therapy resistance. In particular, we show that studying genetically engineered mouse models (GEMMs), which highly resemble the disease in humans, provides a complementary approach to understand MRD. In these animal models, specific mechanisms of secondary resistance can be excluded by targeted genetic modifications. This allows a clear distinction between the selection of cells with stable secondary resistance and mechanisms that result in the survival of residual cells but do not provoke secondary drug resistance. Mechanisms that may explain the latter feature include special biochemical defense properties of cancer stem cells, metabolic peculiarities such as the dependence on autophagy, drug-tolerant persisting cells, intratumoral heterogeneity, secreted factors from the microenvironment, tumor vascularization patterns and immunosurveillance-related factors. We propose in the current review that a common feature of these various mechanisms is cancer cell dormancy. Therefore, dormant cancer cells appear to be an important target in the attempt to eradicate residual cancer cells, and eventually cure patients who repeatedly respond to anticancer therapy but lack complete tumor eradication.
Resumo:
The treatment of infectious diseases affecting osseointegrated implants in function has become a demanding issue in implant dentistry. Since the early 1990s, preclinical data from animal studies have provided important insights into the etiology, pathogenesis and therapy of peri-implant diseases. Established lesions in animals have shown many features in common with those found in human biopsy material. The current review focuses on animal studies, employing different models to induce peri-implant mucositis and peri-implantitis.