26 resultados para Valley encephalitis virus
Resumo:
Live attenuated vaccines provide the most consistent protective immunity in experimental models of lentivirus infections. In this study we tested the hypothesis that animals infected with a naturally attenuated small ruminant lentivirus field strain of genotype E may control a challenge infection with a virulent strain of the caprine arthritis encephalitis virus (CAEV-CO). Within genotype E, Roccaverano strain has been described as attenuated since decreased arthritic pathological indexes were recorded in Roccaverano-infected animals compared to animals of the same breed infected with genotype B strains. Moreover, under natural conditions, animals double-infected with genotypes B and E appear less prone to develop SRLV-related disease, leading to a putative protective role of Roccaverano strain. Here we present evidence that goats experimentally infected with the avirulent genotype E SRLV-Roccaverano strain control the proviral load of a pathogenic challenge virus (CAEV-CO strain) more efficiently than naïve animals and appear to limit the spread of histological lesions to the contralateral joints.
Resumo:
Three field isolates of small ruminant lentiviruses (SRLVs) were derived from a mixed flock of goats and sheep certified for many years as free of caprine arthritis encephalitis virus (CAEV). The phylogenetic analysis of pol sequences permitted to classify these isolates as A4 subtype. None of the animals showed clinical signs of SRLV infection, confirming previous observations which had suggested that this particular subtype is highly attenuated, at least for goats. A quantitative real time PCR strategy based on primers and probes derived from a highly variable env region permitted us to classify the animals as uninfected, singly or doubly infected. The performance of different serological tools based on this classification revealed their profound inadequacy in monitoring animals infected with this particular SRLV subtype. In vitro, the isolates showed differences in their cytopathicity and a tendency to replicate more efficiently in goat than sheep cells, especially in goat macrophages. By contrast, in vivo, these viruses reached significantly higher viral loads in sheep than in goats. Both env subtypes infected goats and sheep with equal efficiency. One of these, however, reached significantly higher viral loads in both species. In conclusion, we characterized three isolates of the SRLV subtype A4 that efficiently circulate in a mixed herd of goats and sheep in spite of their apparent attenuation and a strict physical separation between goats and sheep. The poor performance of the serological tools applied indicates that, to support an SRLV eradication campaign, it is imperative to develop novel, subtype specific tools.
Resumo:
In order to detect a large spectrum of small ruminant lentiviruses, primers for PCR were chosen in conserved parts of the LTR and GAG genes of Icelandic Visna virus 1514 and of the POL gene of caprine arthritis-encephalitis virus. This set of primers was tested in six different caprine arthritis-encephalitis virus (CAEV)- and Maedi-Visna virus isolates of Dutch, American and Swiss origin. The LTR primers allowed the detection of the corresponding fragments of all isolates. The GAG primers allowed amplification of the corresponding fragments of all but the Swiss Maedi-Visna virus strain OLV. Using the POL primers, one Maedi-Visna- and two caprine arthritis-encephalitis virus strains were detected after one round of amplification. Sequencing of the GAG and POL amplification products and comparison to Icelandic Visna virus and CAEV strain CO revealed total heterogeneity of 38% for the GAG- and 28% for the POL fragment. The virus strains studied fall into two groups which are more closely related to one another than to Icelandic Visna virus.
Resumo:
Tick borne encephalitis virus (TBE) is an endemic infectious agent in northeastern Switzerland causing mainly meningoencephalomyelitis in dogs. We report a canine case of tick born meningoencephalomyelitis resulting in flaccid tetraplegia and, subsequently, fatal respiratory failure. Magnetic resonance imaging (MRI) demonstrated intra-axial bilateral, symmetric, and hyperintense lesions in T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) sequences affecting thalamus, basal nuclei, cerebral white matter and ventral horns of the caudal cervical spine. These radiological findings overlap those described during flavivirus encephalitis affecting human beings. These lesions in MRI and diffusion weighted images correlated with areas of vasogenic edema detected histopathologically. In endemic regions, clinicians should be aware that bilateral, symmetrical hyperintense thalamic lesions in T2WI can be suggestive of flavivirus infection in dogs with encephalitis
Resumo:
BACKGROUND Small ruminant lentiviruses escaping efficient serological detection are still circulating in Swiss goats in spite of a long eradication campaign that essentially eliminated clinical cases of caprine arthritis encephalitis in the country. This strongly suggests that the circulating viruses are avirulent for goats.To test this hypothesis, we isolated circulating viruses from naturally infected animals and tested the in vitro and in vivo characteristics of these field isolates. METHODS Viruses were isolated from primary macrophage cultures. The presence of lentiviruses in the culture supernatants was monitored by reverse transcriptase assay. Isolates were passaged in different cells and their cytopathogenic effects monitored by microscopy. Proviral load was quantified by real-time PCR using customized primer and probes. Statistical analysis comprised Analysis of Variance and Bonferroni Multiple Comparison Test. RESULTS The isolated viruses belonged to the small ruminant lentiviruses A4 subtype that appears to be prominent in Switzerland. The 4 isolates replicated very efficiently in macrophages, displaying heterogeneous phenotypes, with two isolates showing a pronounced cytopathogenicity for these cells. By contrast, all 4 isolates had a poor replication capacity in goat and sheep fibroblasts. The proviral loads in the peripheral blood and, in particular, in the mammary gland were surprisingly high compared to previous observations. Nevertheless, these viruses appear to be of low virulence for goats except for the mammary gland were histopathological changes were observed. CONCLUSIONS Small ruminant lentiviruses continue to circulate in Switzerland despite a long and expensive caprine arthritis encephalitis virus eradication campaign. We isolated 4 of these lentiviruses and confirmed their phylogenetic association with the prominent A4 subtype. The pathological and histopathological analysis of the infected animals supported the hypothesis that these A4 viruses are of low pathogenicity for goats, with, however, a caveat about the potentially detrimental effects on the mammary gland. Moreover, the high proviral load detected indicates that the immune system of the animals cannot control the infection and this, combined with the phenotypic plasticity observed in vitro, strongly argues in favour of a continuous and precise monitoring of these SRLV to avoid the risk of jeopardizing a long eradication campaign.
Resumo:
The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, "outrunning" the host's immune response in demyelinating plaques, thus continuously eliciting new lesions.
Resumo:
Cerebrovascular complications including cerebral edema, raised intracranial pressure and hemorrhage contribute to the high mortality and morbidity of herpes-simplex virus encephalitis (HSE). We examined changes of collagen type IV, the major constituent of the neurovascular matrix, together with expression and localization of matrix-degrading enzymes during the development of acute HSE. In an experimental model of focal HSE, we found that early, symptomatic HSE (3 days after infection) and acute, fully developed HSE (7 days after infection) are associated with significantly raised levels of matrix-metalloproteinase-9 (MMP-9) (both P<0.05). In situ zymography of brain sections revealed that the increase of MMP-9 was restricted to the cerebral vasculature in early HSE and further expanded towards the perivascular space and adjacent tissue in acute HSE. Around the cerebral vasculature, we observed that MMP-9 activity was insufficiently counterbalanced by its endogenous tissue inhibitor of MMP (TIMP) TIMP-1, resulting in loss of collagen type IV. Our findings suggest that MMP-9 is involved in the evolution of HSE by causing damage to the cerebral vasculature. The degradation of the neurovascular matrix in HSE facilitates the development of cerebrovascular complications and may represent a target for novel adjuvant treatment strategies.
Resumo:
BACKGROUND: A pregnant 25-year-old woman at 32 weeks' gestation was admitted to an emergency unit after her husband had found her drowsy and with her tongue bitten. The day before admission, the patient had developed a fever of 39 degrees C, was suffering from headaches, was nauseated and had vomited. On admission, she had anterograde and retrograde amnesia, but no somatic neurological deficits were detected. INVESTIGATIONS: Routine laboratory testing, lumbar puncture, cerebrospinal fluid analysis, routine bacteriology, brain MRI, and polymerase chain reaction testing for neurotropic viruses including herpes simplex virus types 1 and 2. DIAGNOSIS: Maternal herpes simplex virus type 1 encephalitis. MANAGEMENT: Antiviral and anticonvulsive therapy, supportive treatment, and cesarean section.
Resumo:
Canine distemper virus (CDV) causes in dogs a severe systemic infection, with a high frequency of demyelinating encephalitis. Among the six genes transcribed by CDV, the P gene encodes the polymerase cofactor protein (P) as well as two additional nonstructural proteins, C and V; of these V was shown to act as a virulence factor. We investigated the molecular mechanisms by which the P gene products of the neurovirulent CDV A75/17 strain disrupt type I interferon (IFN-alpha/beta)-induced signaling that results in the establishment of the antiviral state. Using recombinant knockout A75/17 viruses, the V protein was identified as the main antagonist of IFN-alpha/beta-mediated signaling. Importantly, immunofluorescence analysis illustrated that the inhibition of IFN-alpha/beta-mediated signaling correlated with impaired STAT1/STAT2 nuclear import, whereas the phosphorylation state of these proteins was not affected. Coimmunoprecipitation assays identified the N-terminal region of V (VNT) responsible for STAT1 targeting, which correlated with its ability to inhibit the activity of the IFN-alpha/beta-mediated antiviral state. Conversely, while the C-terminal domain of V (VCT) could not function autonomously, when fused to VNT it optimally interacted with STAT2 and subsequently efficiently suppressed the IFN-alpha/beta-mediated signaling pathway. The latter result was further supported by a single mutation at position 110 within the VNT domain of CDV V protein, resulting in a mutant that lost STAT1 binding while retaining a partial STAT2 association. Taken together, our results identified the CDV VNT and VCT as two essential modules that complement each other to interfere with the antiviral state induced by IFN-alpha/beta-mediated signaling. Hence, our experiments reveal a novel mechanism of IFN-alpha/beta evasion among the morbilliviruses.
Resumo:
Discontinuation of maintenance therapy against toxoplasma encephalitis (TE) for individuals infected with human immunodeficiency virus (HIV) who are receiving successful anti-retroviral therapy is considered safe. Nevertheless, there are few published studies concerning this issue. Within the setting of the Swiss HIV Cohort Study, this report describes a prospective study of discontinuation of maintenance therapy against TE in patients with a sustained increase of CD4 counts to > 200 cells/microL and 14% of total lymphocytes, and no active lesions on cerebral magnetic resonance imaging (MRI). In addition to clinical evaluation, cerebral MRI was performed at baseline, and 1 and 6 months following discontinuation. Twenty-six AIDS patients with a history of TE agreed to participate, but three patients (11%) could not be enrolled because they still showed enhancing cerebral lesions without a clinical correlate. One patient refused MRI after 6 months while clinically asymptomatic. Among the remaining 22 patients who discontinued maintenance therapy, one relapsed after 3 months. During a total follow-up of 58 patient-years, there was no TE relapse among the patients who had remained clinically and radiologically free of relapse during the study. Thus, discontinuation of maintenance therapy against TE was generally safe, but may fail in a minority of patients. Patients who remain clinically and radiologically free of relapse at 6 months after discontinuation are unlikely to experience a relapse of TE.
Resumo:
The presence and distribution of human immunodeficiency virus (HIV) were examined in the CNS of two children with severe HIV encephalitis and myelitis. Using polymerase chain reaction-mediated DNA amplification and subsequent Southern analysis, proviral HIV gag sequences were identified in brain tissue of both patients. In situ hybridization using antisense oligonucleotide probes revealed abundant HIV gag and env/nef RNAs selectively in areas with histopathological evidence for HIV-induced tissue damage. The spinal cord of one patient exhibited a striking subpial accumulation of HIV RNAs strongly suggestive of a liquorigenic spread of the infection. HIV RNAs were typically associated with cells of the monocyte/macrophage lineage, as shown by a combined immunohistochemical and in situ hybridization procedure. The present study supports the view that the pattern and distribution of HIV-induced brain lesions is largely determined by the extent of focal HIV replication within the CNS.