24 resultados para Tangibility of assets. Asset classes. Machinery
Resumo:
The intensive and inappropriate use of antibiotics in both medicine and agriculture has selected for antibiotic resistant bacteria that cause severe problems in antibiotic therapy. In animal husbandry, antibiotics are used for therapeutic and preventive treatments of infectious diseases and as growth promoters. In Europe, many antibiotics used as growth promoters were of the same classes as important antibiotics used in human medicine. The European Union withdrew the authorization for the use of the major antimicrobial growth promoters between 1996 and 1999. In 1999 Switzerland decided to ban the use of all antimicrobials as growthpromoting feed additives. The regulations concerning antibiotic use in animal husbandry and the chronological reasons for the ban of antimicrobial growth promoters are described. This ban led to a decrease of the antibiotic volume deployed in agriculture. This measure helps to reduce the amount of antibiotic resistant bacteria in food-producing animals. However, the use of medicated feed is still a common practice to prevent and to remedy bacterial infections and thus still leads to resistant pathogens. Surveillance programs, single animal treatment, good manufacturing practices and vaccinations are additional measures to be taken to keep the level of resistances in bacteria low.
Resumo:
The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plants highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid -d-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mg g1 range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active.
Resumo:
Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (slime trail) of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.
Resumo:
Paper I: Corporate aging and internal resource allocation Abstract Various observers argue that established firms are at a disadvantage in pursuing new growth opportunities. In this paper, we provide systematic evidence that established firms allocate fewer resources to high-growth lines of business. However, we find no evidence of inefficient resource allocation in established firms. Redirecting resources from high-growth to low-growth lines of business does not result in lower profitability. Also, resource allocation towards new growth opportunities does not increase when managers of established firms are exposed to takeover and product market threats. Rather, it seems that conservative resource allocation strategies are driven by pressures to meet investors expectations. Our empirical evidence, thus, favors the hypothesis that established firms wisely choose to allocate fewer resources to new growth opportunities as external pressures force them to focus on efficiency rather than novelty (Holmstrm 1989). Paper II: Corporate aging and asset sales Abstract This paper asks whether divestitures are motivated by strategic considerations about the scope of the firms activities. Limited managerial capacity implies that exploiting core competences becomes comparatively more attractive than exploring new growth opportunities as firms mature. Divestitures help stablished firms free management time and increase the focus on core competences. The testable implication of this attention hypothesis is that established firms are the main sellers of assets, that their divestiture activity increases when managerial capacity is scarcer, that they sell non-core activities, and that they return the divestiture proceeds to the providers of capital instead of reinvesting them in the firm. We find strong empirical support for these predictions. Paper III: Corporate aging and lobbying expenditures Abstract Creative destruction forces constantly challenge established firms, especially in competitive markets. This paper asks whether corporate lobbying is a competitive weapon of established firms to counteract the decline in rents over time. We find a statistically and economically significant positive relation between firm age and lobbying expenditures. Moreover, the documented age-effect is weaker when firms have unique products or operate in concentrated product markets. To address endogeneity, we use industry distress as an exogenous nonlegislative shock to future rents and show that established firms are relatively more likely to lobby when in distress. Finally, we provide empirical evidence that corporate lobbying efforts by established firms forestall the creative destruction process. In sum, our findings suggest that corporate lobbying is a competitive weapon of established firms to retain profitability in competitive environments.
Resumo:
While the negative effects of divorce on well-being are well documented in research literature, the large individual differences in psychological adaptation over time are still not well understood. This is especially the case for marital breakup after long-term marriage, which is still a neglected research topic. Against this background, the aim of the present contribution is to shed light on the various trajectories of psychological adaptation to marital breakup after a long-term relationship. Data stem from a longitudinal survey study, which is part of the Swiss National Centre of Competence in Research LIVES Overcoming vulnerability: life course perspectives (funded by the Swiss National Science Foundation). Our analyses are based on results of an exploratory latent profile analysis performed at the first assessment in 2012 among 308 divorced participants aged 45 65 years, who divorced after an average of 25 years of marriage (Perrig-Chiello, Hutchison, & Morselli, 2014). Five different groups regarding psychological adaptation to marital breakup (i.e. life satisfaction, depression, hopelessness, subjective health, and mourning) were identified. They were composed of two larger groups of individuals that adapted quite well or very well (average copers, n=151 and resilients, n=90) and of three smaller groups with major difficulties to adjust to the new situation (vulnerables, n= 18; malcontens, n= 37 and resigned ones, n=12). Clusters differed statistically significant regarding personality variables, time since separation, current relationship status, and financial situation. In the present contribution, we want to investigate the course of adaptation of the five classes two years later by using latent transition analysis. Furthermore, we aim to examine which variables in terms of personality, relationship status, variables of the context of the separation and socio-demographic variables are crucial for change or stability in levels of adaptation in the different classes. The evaluation of the trajectories of adaptation to this critical life event and the identification of variables that enhance the adaptation over time is essential for developing more differentiated measures in counselling as well as intervention techniques in clinical and social services.
Resumo:
Mitochondrial protein import is an essential function of the unique mitochondrion in T. brucei as roughly 1000 different nuclear encoded proteins need to be correctly localized to their mitochondrial subcompartment. For this reason the responsible import machinery is expected to be similarly complex as in other Eukaryotes. This was recently demonstrated for the translocation machinery in the outer mitochondrial membrane. In contrast, the composition of the inner membrane import machinery and the exact molecular pathway(s) taken by various substrates are still ill-defined. To elucidate this further, we performed a pulldown analysis of epitope tagged TbTim17 in combination with quantitative mass spectrometry. By this we identified novel components of the mitochondrial import machinery in trypanosomes. One of these, TimX, is an essential mitochondrial membrane protein of 42 kDa that is unique to kinetoplastids. This protein migrates on Blue Native PAGE in a high molecular weight complex similar to TbTim17. Ablation of either of the two proteins leads to a destabilization of the complex containing the other protein. Furthermore, its involvement in protein import could be demonstrated by in vivo and in vitro protein import assays. This corroborates that TimX together with TbTim17 forms a protein import complex in the inner mitochondrial membrane. As TbTim17 the TimX protein was subjected to pulldown analysis in combination with quantitative mass spectrometry. The overlap of candidates defined by these two sets of IPs likely defines further components of the inner membrane translocase which are presently being analyzed. In summary our study on novel components of the trypanosome mitochondrial protein import system gives us fascinating new insights into evolution of the mitochondrion.
Resumo:
Grazing ungulates play a key role in many ecosystems worldwide and can form diverse assemblages, such as in African savannahs. In many of these ecosystems, present-day ungulate communities are impoverished subsets of once diverse assemblages. While we know that excluding all ungulates from grasslands can exert major effects on both the structure and composition of the vegetation, how different individual ungulate species may have contrasting effects on grassland communities remains poorly understood. Here, we performed a long-term Russian doll grazing exclosure experiment in an African savannah to test for the effects of different size classes of grazers on grassland structure and composition. At five sites, grazer species of decreasing size class (ranging from white rhino to scrub hare) were excluded using four fence types, to experimentally create different realized grazer assemblages. The vegetation structure and the grass functional community composition were characterized in 6 different years over a 10-year period. Additionally, animal footprints were counted to quantify the abundance of different ungulate species in each treatment. We found that while vegetation height was mostly driven by total grazing pressure of all species together, ungulate community composition best explained the functional community composition of grasses. In the short term, smaller ungulate species (mesoherbivores) had strongest effects on vegetation composition, by shifting communities towards dominance by species with low specific leaf area and low nutritional value. In the long term, large grazers had stronger but similar effects on the functional composition of the system. Surprisingly, the largest mega-herbivore, the white rhinoceros, did not have strong effects on the vegetation structure or composition. Synthesis. Our results support the idea that different size classes of grazers have varying effects on the functional composition of grassland plant communities. Therefore, the worldwide decline in the diversity of ungulate species is expected to have (had) major impacts on community composition and functioning of grassland ecosystems, even if total grazing pressure has remained constant, for example, due to replacement by livestock.
Resumo:
Protozoan parasites which reside inside a host cell avoid direct destruction by the immune system of the host. The infected cell, however, still has the capacity to counteract the invasive pathogen by initiating its own death, a process which is called programmed cell death or apoptosis. Apoptotic cells are recognised and phagocytosed by macrophages and the parasite is potentially eliminated together with the infected cell. This potent defence mechanism of the host cell puts strong selective pressure on the parasites which have, in turn, evolved strategies to modulate the apoptotic program of the host cell to their favour. Within the last decade, the existence of cellular signalling pathways which inhibit the apoptotic machinery has been demonstrated. It is not surprising that intracellular pathogens subvert these pathways to ensure their own survival in the infected cell. Molecular mechanisms which interfere with apoptotic pathways have been studied extensively for viruses and parasitic bacteria, but protozoan parasites have come into focus only recently. Intracellular protozoan parasites which have been reported to inhibit the apoptotic program of the host cell, are Toxoplasma gondii, Trypanosoma cruzi, Leishmania sp., Theileria sp., Cryptosporidium parvum, and the microsporidian Nosema algerae. Although these parasites differ in their mechanism of host cell entry and in their final intracellular localisation, they might activate similar pathways in their host cells to inhibit apoptosis. In this respect, two families of molecules, which are known for their capacity to interrupt the apoptotic program, are currently discussed in the literature. First, the expression of heat shock proteins is often induced upon parasite infection and can directly interfere with molecules of the cellular death machinery. Secondly, a more indirect effect is attributed to the parasite-dependent activation of NF-kappaB, a transcription factor that regulates the transcription of anti-apoptotic molecules.
Resumo:
Prevalence of integrase inhibitor (INSTI) transmitted drug resistance (TDR) may increase with the increasing use of INSTIs. We analysed the prevalence of INSTI TDR in the Swiss HIV Cohort Study (2008-2014). In 1 of 1,316 (0.1%) drug-nave samples a major INSTI TDR mutation was detected. Prevalence was stable although INSTIs were increasingly used. We showed that this is in contrast to the introduction of previous drug classes where more treatment failures with resistant strains occurred and TDR was observed more rapidly. We demonstrated on a population-level that it is possible to avoid TDR affecting a new drug class for years.