57 resultados para Skin -- Molecular aspects.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prostate cancer is a major health concern as it has the second highest incidence rate among cancers in men. Despite progress in tumor diagnostics and therapeutic approaches, prognosis for men with advanced disease remains poor. In this review we provide insight into the changes of the intermediary metabolism in normal prostate and prostate cancer. In contrast to normal cells, prostate cancer cells are reprogrammed for optimal energy-efficiency with a functional Krebs cycle and minimal apoptosis rates. A key element in this relationship is the uniquely high zinc level of normal prostate epithelial cells. Zinc is transported by the SLC30 and SLC39 families of zinc transporters. However, in prostate cancer the intracellular zinc content is remarkably reduced and expression levels of certain zinc transporters are altered. Here, we summarize the role of different zinc transporters in the development of prostate cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During tumor progression cells acquire an altered metabolism, either as a cause or as a consequence of an increased need of energy and nutrients. All four major classes of macromolecules are affected: carbohydrates, proteins, lipids and nucleic acids. As a result of the changed needs, solute carriers (SLCs) which are the major transporters of these molecules are differently expressed. This renders them important targets in the treatment of cancer. Blocking or activating SLCs is one possible therapeutic strategy. For example, some SLCs are upregulated in tumor cells due to the increased demand for energy and nutritional needs. Thus, blocking them and turning off the delivery of fuel or nutrients could be one way to interfere with tumor progression. Specific drug delivery to cancer cells via transporters is another approach. Some SLCs are also interesting as chemosensitizing targets because blocking or activating them may result in an altered response to chemotherapy. In this review we summarize the roles of SLCs in cancer therapy and specifically their potential as direct or indirect targets, as drug carriers or as chemosensitizing targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SLC13 family comprises five genes (SLC13A1, SLC13A2, SLC13A3, SLC13A4, and SLC13A5) encoding structurally related multi-spanning transporters (8-13 transmembrane domains) with orthologues found in prokaryotes and eukaryotes. Mammalian SLC13 members mediate the electrogenic Na(+)-coupled anion cotransport at the plasma membrane of epithelial cells (mainly kidney, small intestine, placenta and liver) or cells of the central nervous system. While the two SLC13 cotransporters NaS1 (SLC13A1) and NaS2 (SLC13A4) transport anions such sulfate, selenate and thiosulfate, the three other SLC13 members, NaDC1 (SLC13A2), NaCT (SLC13A5) and NaDC3 (SLC13A3), transport di- and tri-carboxylate Krebs cycle intermediates such as succinate, citrate and α-ketoglutarate. All these transporters play a variety of physiological and pathophysiological roles in the different organs. Thus, the purpose of this review is to summarize the roles of SLC13 members in human physiology and pathophysiology and what the therapeutic perspectives are. We have also described the most recent advances on the structure, expression, function and regulation of SLC13 transporters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review is focused on the mammalian SLC11 and SLC40 families and their roles in iron homeostasis. The SLC11 family is composed of two members, SLC11A1 and SLC11A2. SLC11A1 is expressed in the lysosomal compartment of macrophages and in the tertiary granules of neutrophils, playing a key role in innate resistance against infection by intracellular microbes. SLC11A2 is a key player in iron metabolism and is ubiquitously expressed, most notably in the proximal duodenum, immature erythroid cells, brain, placenta and kidney. Intestinal iron absorption is mediated by SLC11A2 at the apical membrane of enterocytes, followed by basolateral exit via SLC40A1. To meet the daily requirement for iron, approximately 80% of the iron comes from the breakdown of hemoglobin following macrophage phagocytosis of senescent erythrocytes (iron recycling). Both SLC11A1 and SLC11A2 play an important role in macrophage iron recycling. SLC11A2 also transports iron into the cytosol across the membrane of endocytotic vesicles of the transferrin receptor-cycle. SLC40A1 is the sole member of the SLC40 family and is involved in the only cellular iron efflux mechanism described. SLC40A1 is highly expressed in several tissues and cells that play a critical role in body iron homeostasis. The signaling pathways that regulate SLC11A2 and SLC40A1 expression at transcriptional, post-transcriptional and post-translational levels are discussed. The roles of SLC11A2 and/or SLC40A1 in iron-associated disorders such as hemochromatosis, neurodegenerative diseases, and breast cancer are also summarized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The field of transport biology has steadily grown over the past decade and is now recognized as playing an important role in manifestation and treatment of disease. The SLC (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue features mini-reviews for each of these SLC families written by the experts in each field. The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.bioparadigms.org), has been updated and significantly extended with additional information and cross-links to other relevant databases, and the nomenclature used in this database has been validated and approved by the HGNC. In addition, the Bioparadigms SLC Tables functionality has been improved to allow easier access by the scientific community. This introduction includes: an overview of all known SLC and "non-SLC" transporter genes; a list of transporters of water soluble vitamins; a summary of recent progress in the structure determination of transporters (including GLUT1/SLC2A1); roles of transporters in human diseases and roles in drug approval and pharmaceutical perspectives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) ranks as the fourth commonest cause of cancer death while its incidence is increasing worldwide. For all stages, survival at 5 years is<5%. The lethal nature of pancreatic cancer is attributed to its high metastatic potential to the lymphatic system and distant organs. Lack of effective therapeutic options contributes to the high mortality rates of PDAC. Recent evidence suggests that epithelial-mesenchymal transition (EMT) plays an important role to the disease progression and development of drug resistance in PDAC. Tumor budding is thought to reflect the process of EMT which allows neoplastic epithelial cells to acquire a mesenchymal phenotype thus increasing their capacity for migration and invasion and help them become resistant to apoptotic signals. In a recent study by our own group the presence and prognostic significance of tumor budding in PDAC were investigated and an association between high-grade budding and aggressive clinicopathological features of the tumors as well as worse outcome of the patients was found. The identification of EMT phenotypic targets may help identifying new molecules so that future therapeutic strategies directed specifically against them could potentially have an impact on drug resistance and invasiveness and hence improve the prognosis of PDAC patients. The aim of this short review is to present an insight on the morphological and molecular aspects of EMT and on the factors that are involved in the induction of EMT in PDAC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Despite its extensive use as a nitrogen fertilizer, the role of urea as a directly accessible nitrogen source for crop plants is still poorly understood. So far, the physiological and molecular aspects of urea acquisition have been investigated only in few plant species highlighting the importance of a high-affinity transport system. With respect to maize, a worldwide-cultivated crop requiring high amounts of nitrogen fertilizer, the mechanisms involved in the transport of urea have not yet been identified. The aim of the present work was to characterize the high-affinity urea transport system in maize roots and to identify the high affinity urea transporter. Results: Kinetic characterization of urea uptake (<300 mu M) demonstrated the presence in maize roots of a high-affinity and saturable transport system; this system is inducible by urea itself showing higher Vmax and Km upon induction. At molecular level, the ORF sequence coding for the urea transporter, ZmDUR3, was isolated and functionally characterized using different heterologous systems: a dur3 yeast mutant strain, tobacco protoplasts and a dur3 Arabidopsis mutant. The expression of the isolated sequence, ZmDUR3-ORF, in dur3 yeast mutant demonstrated the ability of the encoded protein to mediate urea uptake into cells. The subcellular targeting of DUR3/GFP fusion proteins in tobacco protoplasts gave results comparable to the localization of the orthologous transporters of Arabidopsis and rice, suggesting a partial localization at the plasma membrane. Moreover, the overexpression of ZmDUR3 in the atdur3-3 Arabidopsis mutant showed to complement the phenotype, since different ZmDUR3-overexpressing lines showed either comparable or enhanced 15N]-urea influx than wild-type plants. These data provide a clear evidence in planta for a role of ZmDUR3 in urea acquisition from an extra-radical solution. Conclusions: This work highlights the capability of maize plants to take up urea via an inducible and high-affinity transport system. ZmDUR3 is a high-affinity urea transporter mediating the uptake of this molecule into roots. Data may provide a key to better understand the mechanisms involved in urea acquisition and contribute to deepen the knowledge on the overall nitrogen-use efficiency in crop plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IL-23 is a heterodimeric cytokine involved in inflammatory diseases; its role in cancer progression is controversial. Here we analyse the expression of IL-23 subunits (p40 and p19) and IL-23R in colorectal cancer with regard to disease progression, clinical-pathological and molecular aspects. Immunohistochemistry for IL-23p19, IL-23p40, IL-23R and CD8 was performed on a multi-punch tissue microarray of 195 colorectal cancers (cohort 1), matched normal tissue, adenoma and lymph node metastases. Results were compared with clinical-pathological features and CD8+ T-cell counts, then validated on two patient cohorts (cohort 2: n=341, cohort 3: n=139). Cytoplasmic/membranous expression of IL-23 (p19 and p40 subunits) and IL-23R, respectively were over-expressed in carcinomas versus adenomas and normal tissues (p<0.0001) but were reduced in lymph node metastases (p<0.0001). Nuclear IL-23p19 expression was observed in 23.1% and was associated with early TNM stage (p=0.0186), absence of venous (p=0.0124) and lymphatic invasion (p=0.01493), favorable survival (p=0.014) and absence of distant metastasis (p=0.0146; specificity: 100%). This unexpected cellular localization was confirmed by cell fractionation. The beneficial effect of nuclear IL-23p19 was restricted to tumours with CD8+ high counts. Results were validated on Cohorts 2/3. This multicenter study underlines the possible CD8(+)--dependency and beneficial effect of nuclear IL-23p19 on overall patient survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salmonella enterica subspecies I serovars are common bacterial pathogens causing diseases ranging from enterocolitis to systemic infections. Some serovars are adapted to specific hosts, whereas others have a broad host range. The molecular mechanisms defining the virulence characteristics and the host range of a given S. enterica serovar are unknown. Streptomycin pretreated mice provide a surrogate host model for studying molecular aspects of the intestinal inflammation (colitis) caused by serovar Typhimurium (S. Hapfelmeier and W. D. Hardt, Trends Microbiol. 13:497-503, 2005). Here, we studied whether this animal model is also useful for studying other S. enterica subspecies I serovars. All three tested strains of the broad-host-range serovar Enteritidis (125109, 5496/98, and 832/99) caused pronounced colitis and systemic infection in streptomycin pretreated mice. Different levels of virulence were observed among three tested strains of the host-adapted serovar Dublin (SARB13, SD2229, and SD3246). Several strains of host restricted serovars were also studied. Two serovar Pullorum strains (X3543 and 449/87) caused intermediate levels of colitis. No intestinal inflammation was observed upon infection with three different serovar Paratyphi A strains (SARB42, 2804/96, and 5314/98) and one serovar Gallinarum strain (X3796). A second serovar Gallinarum strain (287/91) was highly virulent and caused severe colitis. This strain awaits future analysis. In conclusion, the streptomycin pretreated mouse model can provide an additional tool to study virulence factors (i.e., those involved in enteropathogenesis) of various S. enterica subspecies I serovars. Five of these strains (125109, 2229, 287/91, 449/87, and SARB42) are subject of Salmonella genome sequencing projects. The streptomycin pretreated mouse model may be useful for testing hypotheses derived from this genomic data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In aerobic eukaryotic cells, the high energy metabolite ATP is generated mainly within the mitochondria following the process of oxidative phosphorylation. The mitochondrial ATP is exported to the cytoplasm using a specialized transport protein, the ADP/ATP carrier, to provide energy to the cell. Any deficiency or dysfunction of this membrane protein leads to serious consequences on cell metabolism and can cause various diseases such as muscular dystrophy. Described as a decisive player in the programmed cell death, it was recently shown to play a role in cancer. The objective of this review is to summarize the current knowledge of the involvement of the ADP/ATP carrier, encoded by the SLC25A4, SLC25A5, SLC25A6 and SLC25A31 genes, in human diseases and of the efforts made at designing different model systems to study this carrier and the associated pathologies through biochemical, genetic, and structural approaches.