26 resultados para Relation quantitative structure-propriété
Resumo:
Quantitative reverse transcriptase real-time PCR (QRT-PCR) is a robust method to quantitate RNA abundance. The procedure is highly sensitive and reproducible as long as the initial RNA is intact. However, breaks in the RNA due to chemical or enzymatic cleavage may reduce the number of RNA molecules that contain intact amplicons. As a consequence, the number of molecules available for amplification decreases. We determined the relation between RNA fragmentation and threshold values (Ct values) in subsequent QRT-PCR for four genes in an experimental model of intact and partially hydrolyzed RNA derived from a cell line and we describe the relation between RNA integrity, amplicon size and Ct values in this biologically homogenous system. We demonstrate that degradation-related shifts of Ct values can be compensated by calculating delta Ct values between test genes and the mean values of several control genes. These delta Ct values are less sensitive to fragmentation of the RNA and are unaffected by varying amounts of input RNA. The feasibility of the procedure was demonstrated by comparing Ct values from a larger panel of genes in intact and in partially degraded RNA. We compared Ct values from intact RNA derived from well-preserved tumor material and from fragmented RNA derived from formalin-fixed, paraffin-embedded (FFPE) samples of the same tumors. We demonstrate that the relative abundance of gene expression can be based on FFPE material even when the amount of RNA in the sample and the extent of fragmentation are not known.
Resumo:
The performance of tasks that are perceived as unnecessary or unreasonable, illegitimate tasks, represents a new stressor concept that refers to assignments that violate the norms associated with the role requirements of professional work. Research has shown that illegitimate tasks are associated with stress and counterproductive work behaviour. The purpose of this study was to provide insight into the contribution of characteristics of the organization on the prevalence of illegitimate tasks in the work of frontline and middle managers. Using the Bern Illegitimate Task Scale (BITS) in a sample of 440 local government operations managers in 28 different organizations in Sweden, this study supports the theoretical assumptions that illegitimate tasks are positively related to stress and negatively related to satisfaction with work performance. Results further show that 10% of the variance in illegitimate tasks can be attributed to the organization where the managers work. Multilevel referential analysis showed that the more the organization was characterized by competition for resources between units, unfair and arbitrary resource allocation and obscure decisional structure, the more illegitimate tasks managers reported. These results should be valuable for strategic-level management since they indicate that illegitimate tasks can be counteracted by means of the organization of work.
Resumo:
The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.
Quantitative analysis of benign paroxysmal positional vertigo fatigue under canalithiasis conditions
Resumo:
In our daily life, small flows in the semicircular canals (SCCs) of the inner ear displace a sensory structure called the cupula which mediates the transduction of head angular velocities to afferent signals. We consider a dysfunction of the SCCs known as canalithiasis. Under this condition, small debris particles disturb the flow in the SCCs and can cause benign paroxysmal positional vertigo (BPPV), arguably the most common form of vertigo in humans. The diagnosis of BPPV is mainly based on the analysis of typical eye movements (positional nystagmus) following provocative head maneuvers that are known to lead to vertigo in BPPV patients. These eye movements are triggered by the vestibulo-ocular reflex, and their velocity provides an indirect measurement of the cupula displacement. An attenuation of the vertigo and the nystagmus is often observed when the provocative maneuver is repeated. This attenuation is known as BPPV fatigue. It was not quantitatively described so far, and the mechanisms causing it remain unknown. We quantify fatigue by eye velocity measurements and propose a fluid dynamic interpretation of our results based on a computational model for the fluid–particle dynamics of a SCC with canalithiasis. Our model suggests that the particles may not go back to their initial position after a first head maneuver such that a second head maneuver leads to different particle trajectories causing smaller cupula displacements.
Resumo:
Camillo Golgi's "Reazione Nera" led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM) they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF), which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP) at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin), an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as an appropriate method for studying the fine structure and molecular composition of synapses on dendritic spines.
Resumo:
The redox property of ceria is a key factor in the catalytic activity of ceria-based catalysts. The oxidation state of well-defined ceria nanocubes in gas environments was analysed in situ by a novel combination of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) and high-energy XPS at a synchrotron X-ray source. In situ high-energy XPS is a promising new tool to determine the electronic structure of matter under defined conditions. The aim was to quantitatively determine the degree of cerium reduction in a nano-structured ceria-supported platinum catalyst as a function of the gas environment. To obtain a non-destructive depth profile at near-ambient pressure, in situ high-energy XPS analysis was performed by varying the kinetic energy of photoelectrons from 1 to 5 keV, and, thus, the probing depth. In ceria nanocubes doped with platinum, oxygen vacancies formed only in the uppermost layers of ceria in an atmosphere of 1 mbar hydrogen and 403 K. For pristine ceria nanocubes, no change in the cerium oxidation state in various hydrogen or oxygen atmospheres was observed as a function of probing depth. In the absence of platinum, hydrogen does not dissociate and, thus, does not lead to reduction of ceria.
Resumo:
The long-term integrity of protected areas (PAs), and hence the maintenance of related ecosystem services (ES), are dependent on the support of local people. In the present study, local people's perceptions of ecosystem services from PAs and factors that govern local preferences for PAs are assessed. Fourteen study villages were randomly selected from three different protected forest areas and one control site along the southern coast of Côte d'Ivoire. Data was collected through a mixed-method approach, including qualitative semi-structured interviews and a household survey based on hypothetical choice scenarios. Local people's perceptions of ecosystem service provision was decrypted through qualitative content analysis, while the relation between people's preferences and potential factors that affect preferences were analyzed through multinomial models. This study shows that rural villagers do perceive a number of different ecosystem services as benefits from PAs in Côte d'Ivoire. The results based on quantitative data also suggest that local preferences for PAs and related ecosystem services are driven by PAs' management rules, age, and people's dependence on natural resources.
Resumo:
BACKGROUND The Bern Psychopathology Scale (BPS) is based on a system-specific approach to classifying the psychopathological symptom pattern of schizophrenia. It consists of subscales for three domains (language, affect and motor behaviour) that are hypothesized to be related to specific brain circuits. The aim of the study was to examine the factor structure of the BPS in patients with schizophrenia spectrum disorders. METHODS One hundred and forty-nine inpatients with schizophrenia spectrum disorders were recruited at the Department of Psychiatry II, Ulm University, Germany (n=100) and at the University Hospital of Psychiatry, Bern, Switzerland (n=49). Psychopathology was assessed with the BPS. The VARCLUS procedure of SAS(®) (a type of oblique component analysis) was used for statistical analysis. RESULTS Six clusters were identified (inhibited language, inhibited motor behaviour, inhibited affect, disinhibited affect, disinhibited language/motor behaviour, inhibited language/motor behaviour) which explained 40.13% of the total variance of the data. A binary division of attributes into an inhibited and disinhibited cluster was appropriate, although an overlap was found between the language and motor behaviour domains. There was a clear distinction between qualitative and quantitative symptoms. CONCLUSIONS The results argue for the validity of the BPS in identifying subsyndromes of schizophrenia spectrum disorders according to a dimensional approach. Future research should address the longitudinal assessment of dimensional psychopathological symptoms and elucidate the underlying neurobiological processes.
Resumo:
Venous air embolism (VAE) is an often occurring forensic finding in cases of injury to the head and neck. Whenever found, it has to be appraised in its relation to the cause of death. While visualization and quantification is difficult at traditional autopsy, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) offer a new potential in the diagnosis of VAE. This paper reports the findings of VAE in four cases of massive head injury examined postmortem by Multislice Computed Tomography (MSCT) prior to autopsy. MSCT data of the thorax were processed using 3D air structure reconstruction software to visualize air embolism within the vascular system. Quantification of VAE was done by multiplying air containing areas on axial 2D images by their reconstruction intervals and then by summarizing the air volumes. Excellent 3D visualization of the air within the vascular system was obtained in all cases, and the intravascular gas volume was quantified.
Resumo:
The present report describes a real-time PCR-based procedure to reliably determine the quantity of Leishmania amastigotes in relation to the amount of host tissue in histological skin sections from canine and equine cases of cutaneous leishmaniasis. The novel diagnostic Leishmania-PCR has a detection limit of <0.02 amastigotes per μg tissue, which corresponds well to the detection limit of immunohistochemistry and is far beyond that of conventional histology. Our results emphasise the importance of PCR to complement routine histology of cutaneous leishmaniasis cases, particularly in laboratories in which no immunohistochemical assay is available.
Resumo:
Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leucocytes thereby causing fatal immunoproliferative diseases. Buparvaquone, a hydroxynaphthoquinone related to parvaquone, is the only drug available against Theileria. The drug is only effective at the onset of infection and emerging resistance underlines the need for identifying alternative compounds. Current drug assays employ monitoring of proliferation of infected cells, with apoptosis of the infected host cell as a read-out, but it is often unclear whether active compounds directly impair the viability of the parasite or primarily induce host cell death. We here report on the development of a quantitative reverse transcriptase real time PCR method based on two Theileria genes, tasp and tap104, which are both expressed in schizonts. Upon in vitro treatment of T. annulata infected bovine monocytes with buparvaquone, TaSP and Tap104 mRNA expression levels significantly decreased in relation to host cell actin already within 4 h of drug exposure, while significant differences in host cell proliferation were detectable only after 48-72 h. TEM revealed marked alterations of the schizont ultrastructure already after 2 h of buparvaquone treatment, while the host cell remained unaffected. Expression of TaSP and Tap104 proteins showed a marked decrease only after 24 h. Therefore, the analysis of expression levels of mRNA coding for TaSP and Tap104 allows to directly measuring impairment of parasite viability. We subsequently applied this method using a series of compounds affecting different targets in other apicomplexan parasites, and show that monitoring of TaSP- and Tap104 mRNA levels constitutes a suitable tool for anti-theilerial drug development.