23 resultados para Récepteur métabotropique du GABA (GABA(B))
Resumo:
NA-glycine is an endogenous lipid molecule with analgesic properties, which is structurally similar to the endocannabinoids 2-AG and anandamide but does not interact with cannabinoid receptors. NA-glycine has been suggested to act at the G-protein coupled receptors GPR18 and GPR92. Recently, we have described that NA-glycine can also modulate recombinant α1β2γ2 GABAA receptors. Here we characterize in more detail this modulation and investigate the relationship of its binding site with that of the endocannabinoid 2-AG.
Resumo:
2-arachidonyl glycerol (2-AG) allosterically potentiates GABAA receptors via a binding site located in transmembrane segment M4 of the β2 subunit. Two amino acid residues have been described that are essential for this effect. With the aim to further describe this potential drug target, we performed a cysteine scanning of the entire M4 and part of M3. All four residues in M4 affecting the potentiation here and the two already identified residues locate to the same side of the α-helix. This side is exposed to M3, where further residues were identified. From the fact that the important residues span > 18 Å, we conclude that the hydrophobic tail of the bound 2-AG molecule must be near linear and that the site mainly locates to the inner leaflet but stretches far into the membrane. The influence of the structure of the head group of the ligand molecule on the activity of the molecule was also investigated. We present a model of 2-AG docked to the GABAA receptor.
Resumo:
GABA-A receptors are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. 19 different subunit isoforms have been identified, with the major receptor type in mammalian adult brain consisting of α1, β2, and γ2 subunits. GABA-A receptors are the target of numerous sedating and anxiolytic drugs such as benzodiazepines. The currently known endogenous ligands are GABA, neurosteroids and the endocannabinoid 2- arachidonoyl glycerol (2-AG). The pharmacological properties of this chloride ion channel strictly depend on receptor subunit composition and arrangement. GABA-A receptors bind and are inhibited by epileptogenic agents such as picrotoxin, and cyclodiene insecticides such as dieldrin. We screened aromatic monovalent anions with five-fold symmetry for inhibition of GABA-A receptors. One of the anions, PCCPinhibited currents elicited by GABA with comparable potency as picrotoxin. This inhibition showed all characteristics of an open channel block. The GABA-A receptor ion channel is lined by residues from the M2 membrane-spanning segment. To identify important residues of the pore involved in the interaction with the blocking molecules PCCP-, a mutation scan was performed in combination with subsequent analysis of the expressed mutant proteins using electrophysiological techniques. In a second project we characterised a light-switchable modulator of GABA-A receptors based on propofol. It was my responsibility to investigate the switching kinetics in patch clamp experiments. After its discovery in 1980, propofol has become the most widely used intravenous general anaesthetic. It is commonly accepted that the anaesthesia induced by this unusually lipophilic drug mostly results from potentiation of GABA induced currents. While GABA-A receptors respond to a variety of ligands, they are normally not sensitive towards light. This light sensitivity could be indirectly achieved by using modulators that can be optically switched between an active and an inactive form. We tested an azobenzene derivative of propofol where an aryldiazene unit is directly coupled to the pharmacophore. This molecule was termed azopropofol (AP2). The effect of AP2 on Cl- currents was investigated with electrophysiological techniques using α1β2γ2 GABA-A receptors expressed in Xenopus oocytes and HEK-cells. In the third project we wanted to investigate the functional role of GABA-A receptors in the liver, and their possible involvement in cell proliferation. GABA-A receptors are also found in a wide range of peripheral tissues, including parts of the peripheral nervous system and non-neural tissues such as smooth muscle, the female reproductive system, liver and several cancer tissues. However their precise function in non neuronal or cancerous cells is still unknown. For this purpose we investigated expression, localization and function of the hepatocytes GABA-A receptors in model cell lines and healthy and cancerous hepatocytes.
Resumo:
Although posttraumatic stress disorder (PTSD) is associated with a variety of structural and functional brain changes, the molecular pathophysiological mechanisms underlying these macroscopic alterations are unknown. Recent studies support the existence of an altered excitation-inhibition balance in PTSD. Further, there is preliminary evidence from blood-sample studies suggesting heightened oxidative stress in PTSD, potentially leading to neural damage through excessive brain levels of free radicals. In this study we investigated PTSD (n=12) and non-PTSD participants (n=17) using single-voxel proton magnetic resonance spectroscopy (MRS) in dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). We found significantly higher levels of γ-amino butyric acid (GABA) (a primary inhibitory neurotransmitter) and glutathione (a marker for neuronal oxidative stress) in PTSD participants. Atypically high prefrontal inhibition as well as oxidative stress may be involved in the pathogenesis of PTSD.
Resumo:
Biphenylic compounds related to the natural products magnolol and 4'-O-methylhonokiol were synthesized, evaluated and optimized as positive allosteric modulators (PAMs) of GABA(A) receptors. The most efficacious compounds were the magnolol analog 5-ethyl-5'-hexylbiphenyl-2,2'-diol (45) and the honokiol analogs 4'-methoxy-5-propylbiphenyl-2-ol (61), 5-butyl-4'-methoxybiphenyl-2-ol (62) and 5-hexyl-4'-methoxybiphenyl-2-ol (64), which showed a most powerful potentiation of GABA-induced currents (up to 20-fold at a GABA concentration of 3μM). They were found not to interfere with the allosteric sites occupied by known allosteric modulators, such as benzodiazepines and N-arachidonoylglycerol. These new PAMs will be useful as pharmacological tools and may have therapeutic potential for mono-therapy, or in combination, for example, with GABA(A) receptor agonists.
Resumo:
Glutamate derived γ-aminobutyric acid (GABA) is synthetized in the cytosol prior to delivery to the mitochondria where it is catabolized via the TCA cycle. GABA accumulates under various environmental conditions, but an increasing number of studies show its involvement at the crossroad between C and N metabolism. To assess the role of GABA in modulating cellular metabolism, we exposed seedlings of A. thaliana GABA transporter gat1 mutant to full nutrition medium and media deficient in C and N combined with feeding of different concentrations (0.5 and 1 mM) of exogenous GABA. GC-MS based metabolite profiling showed an expected effect of medium composition on the seedlings metabolism of mutant and wild type alike. That being said, a significant interaction between GAT1 deficiency and medium composition was determined with respect to magnitude of change in relative amino acid levels. The effect of exogenous GABA treatment on metabolism was contingent on both the medium and the genotype, leading for instance to a drop in asparagine under full nutrition and low C conditions and glucose under all tested media, but not to changes in GABA content. We additionally assessed the effect of GAT1 deficiency on the expression of glutamate metabolism related genes and genes involved in abiotic stress responses. These results suggest a role for GAT1 in GABA-mediated metabolic alterations in the context of the C-N equilibrium of plant cells.
Resumo:
Arabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9±1.7 and 1.7±0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds.