27 resultados para Plant growth retardants
Resumo:
Semi-arid ecosystems play an important role in regulating global climate with the fate of these ecosystems in the Anthropocene depending upon interactions among temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. Interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This study evaluates recent trends in productivity and phenology of Inner Asian forests (in Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Trends in photosynthetically active radiation fraction (FPAR) between 1982 and 2010 show a greening of about 7% of the region in spring (March, April, May), and 3% of the area ‘browning’ during summertime (June, July, August). These satellite observations of FPAR are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and possibly even greater forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover. The fate of these semi-arid ecosystems thus appears to hinge upon the magnitude and subtleties of CO2 fertilization effects, for which experimental observations in arid systems are needed to test and refine vegetation models.
Resumo:
The technical definition of ‘wood’ is well accepted, but its botanical understanding remains vague. Different degrees and amounts of lignification in plants and their imprecise description, together with a conceptually doubtful life form catalog including trees, shrubs and herbs further complicate our understanding of ‘wood’. Here, we use permanent micro sections to demonstrate that the xylem and bark of terrestrial plants can vary from one tissue with a few lignified cells to an almost fully lignified tissue. This universal principle of plant growth and stabilization, accounting for all taxonomic units within vascular plants, suggests that the classical life form separation into herbs, shrubs and trees is not valid. An anatomical-based differentiation between ‘wood’, ‘woody’ and ‘woodiness’ is also only meaningful if supplemented by insight on the particular plant section and its lignified proportion. We therefore recommend utilizing the botanically more neutral term ‘stem anatomy’ instead of ‘wood anatomy’, which further implies integration of the xylem and bark of all terrestrial plants. Since dendrochronology considers shrubs, dwarf shrubs and perennial herbs in addition to trees, its semantic expansion toward ‘xylemchronology’ might be worthwhile considering.
Resumo:
Thigmomorphogenesis, the characteristic phenotypic changes by which plants react to mechanical stress, is a widespread and probably adaptive type of phenotypic plasticity. However, little is known about its genetic basis and population variation. Here, we examine genetic variation for thigmomorphogenesis within and among natural populations of the model system Arabidopsis thaliana. Offspring from 17 field-collected European populations was subjected to three levels of mechanical stress exerted by wind. Overall, plants were remarkably tolerant to mechanical stress. Even high wind speed did not significantly alter the correlation structure among phenotypic traits. However, wind significantly affected plant growth and phenology, and there was genetic variation for some aspects of plasticity to wind among A. thaliana populations. Our most interesting finding was that phenotypic traits were organized into three distinct and to a large degree statistically independent covariance modules associated with plant size, phenology, and growth form, respectively. These phenotypic modules differed in their responsiveness to wind, in the degree of genetic variability for plasticity, and in the extent to which plasticity affected fitness. It is likely, therefore, that thigmomorphogenesis in this species evolves quasi-independently in different phenotypic modules.
Resumo:
Activated carbon has become a widely used tool to investigate root-mediated allelopathy of plants, especially in plant invasion biology, because it adsorbs and thereby neutralizes root exudates. Allelopathy has been a controversially debated phenomenon for years, which revived in plant invasion biology as one possible reason for the success of invasive plants. Noxious plant exudates may harm other plants and provide an advantage to the allelopathic plant. However, root exudates are not always toxic, but may stimulate the microbial community and change nutrient availability in the rhizosphere. In a greenhouse experiment, we investigated the interacting effects of activated carbon, arbuscular mycorrhiza and plant competition between the invasive Senecio inaequidens and the native Artemisia vulgaris. Furthermore, we tested whether activated carbon showed any undesired effects by directly affecting mycorrhiza or soil chemistry. Contrary to the expectation, S. inaequidens was a weak competitor and we could not support the idea that allelopathy was involved in the competition. Activated carbon led to a considerable increase in the aboveground biomass production and reduced the infection with arbuscular mycorrhiza of both plant species. We expected that arbuscular mycorrhiza promotes plant growth by increasing nutrient availability, but we found the contrary when activated carbon was added. Chemical analyses of the substrate showed, that adding activated carbon resulted in a strong increase in plant available phosphate and in a decrease of the C(organic)/N(total) ration both of which suggest stimulated microbial activity. Thus, activated carbon not only reduced potential allelopathic effects, but substantially changed the chemistry of the substrate. These results show that activated carbon should be handled with great care in ecological experiments on allelopathy because of possible confounding effects on the soil community.
Resumo:
Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.
Resumo:
Temperate C3-grasslands are of high agricultural and ecological importance in Central Europe. Plant growth and consequently grassland yields depend strongly on water supply during the growing season, which is projected to change in the future. We therefore investigated the effect of summer drought on the water uptake of an intensively managed lowland and an extensively managed sub-alpine grassland in Switzerland. Summer drought was simulated by using transparent shelters. Standing above- and belowground biomass was sampled during three growing seasons. Soil and plant xylem waters were analyzed for oxygen (and hydrogen) stable isotope ratios, and the depths of plant water uptake were estimated by two different approaches: (1) linear interpolation method and (2) Bayesian calibrated mixing model. Relative to the control, aboveground biomass was reduced under drought conditions. In contrast to our expectations, lowland grassland plants subjected to summer drought were more likely (43–68 %) to rely on water in the topsoil (0–10 cm), whereas control plants relied less on the topsoil (4–37 %) and shifted to deeper soil layers (20–35 cm) during the drought period (29–48 %). Sub-alpine grassland plants did not differ significantly in uptake depth between drought and control plots during the drought period. Both approaches yielded similar results and showed that the drought treatment in the two grasslands did not induce a shift to deeper uptake depths, but rather continued or shifted water uptake to even more shallower soil depths. These findings illustrate the importance of shallow soil depths for plant performance under drought conditions.
Resumo:
Aluminum phytotoxicity frequently occurs in acid soils (pH < 5.5) and was therefore discussed to affect ecosystem functioning of tropical montane forests. The susceptibility to Al toxicity depends on the sensitivity of the plant species and the Al speciation in soil solution, which can vary highly depending e.g., on pH, ionic strength, and dissolved organic matter. An acidification of the ecosystem and periodic base metal deposition from Saharan dust may control plant available Al concentrations in the soil solutions of tropical montane rainforests in south Ecuador. The overall objective of my study was to assess a potential Al phytotoxicity in the tropical montane forests in south Ecuador. For this purpose, I exposed three native Al non-accumulating tree species (Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson) to increased Al concentrations (0 – 2400 μM Al) in a hydroponic experiment, I established dose-response curves to estimate the sensitivity of the tree species to increased Al concentrations, and I investigated the mechanisms behind the observed effects induced by elevated Al concentrations. Furthermore, the response of Al concentrations and the speciation in soil solution to Ca amendment in the study area were determined. In a final step, I assessed all major Al fluxes, drivers of Al concentrations in ecosystem solutions, and indicators of Al toxicity in the tropical montane rainforest in Ecuador in order to test for indications of Al toxicity. In the hydroponic experiment, a 10 % reduction in aboveground biomass production occurred at 126 to 376 μM Al (EC10 values), probably attributable to decreased Mg concentrations in leaves and reduced potosynthesis. At 300 μM Al, increased root biomass production of T. chrysantha was observed. Phosphorus concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 μM Al and correlated significantly with root biomass, being a likely reason for stimulated root biomass production. The degree of organic complexation of Al in the organic layer leachate, which is central to plant nutrition because of the high root density, and soil solution from the study area was very high (mean > 99 %). The resulting low free Al concentrations are not likely to affect plant growth, although the concentrations of potentially toxic Al3+ increased with soil depth due to higher total Al and lower dissolved organic matter concentrations in soil solutions. The Ca additions caused an increase of Al in the organic layer leachate, probably because Al3+ was exchanged against the added Ca2+ ions while pH remained constant. The free ion molar ratios of Ca2+:Al3+ (mean ratio ca. 400) were far above the threshold (≤ 1) for Al toxicity, because of a much higher degree of organo-complexation of Al than Ca. High Al fluxes in litterfall (8.8 – 14.2 kg ha−1 yr−1) indicate a high Al circulation through the ecosystem. The Al concentrations in the organic layer leachate were driven by the acidification of the ecosystem and increased significantly between 1999 and 2008. However, the Ca:Al molar ratios in organic layer leachate and all aboveground ecosystem solutions were above the threshold for Al toxicity. Except for two Al accumulating and one non-accumulating tree species, the Ca:Al molar ratios in tree leaves from the study area were above the Al toxicity threshold of 12.5. I conclude that toxic effects in the hydroponic experiment occurred at Al concentrations far above those in native organic layer leachate, shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis, and the stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake. Dissolved organic matter in soil solutions detoxifies Al in acidic tropical forest soils and a wide distribution of Al accumulating tree species and high Al fluxes in the ecosystem do not necessarily imply a general Al phytotoxicity.
Resumo:
Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf–leaf, root–shoot) defence signalling, we explore the role of phytohormones in driving broad-scale patterns of aboveground–belowground interactions that can be extrapolated to general plant–insect relationships. We propose that the outcome of intra-feeding guild interactions is generally negative due to induction of similar phytohormonal pathways, whereas between-guild interactions are often positive due to negative signal crosstalk. However, not all outcomes could be explained by feeding guild; we argue that future studies should target ecologically representative plant–insect systems, distinguish subguilds, and include plant growth hormones to improve our understanding of plant-mediated interactions.
Resumo:
Background The optimal defence hypothesis (ODH) predicts that tissues that contribute most to a plant's fitness and have the highest probability of being attacked will be the parts best defended against biotic threats, including herbivores. In general, young sink tissues and reproductive structures show stronger induced defence responses after attack from pathogens and herbivores and contain higher basal levels of specialized defensive metabolites than other plant parts. However, the underlying physiological mechanisms responsible for these developmentally regulated defence patterns remain unknown. Scope This review summarizes current knowledge about optimal defence patterns in above- and below-ground plant tissues, including information on basal and induced defence metabolite accumulation, defensive structures and their regulation by jasmonic acid (JA). Physiological regulations underlying developmental differences of tissues with contrasting defence patterns are highlighted, with a special focus on the role of classical plant growth hormones, including auxins, cytokinins, gibberellins and brassinosteroids, and their interactions with the JA pathway. By synthesizing recent findings about the dual roles of these growth hormones in plant development and defence responses, this review aims to provide a framework for new discoveries on the molecular basis of patterns predicted by the ODH. Conclusions Almost four decades after its formulation, we are just beginning to understand the underlying molecular mechanisms responsible for the patterns of defence allocation predicted by the ODH. A requirement for future advances will be to understand how developmental and defence processes are integrated.
Resumo:
The mechanisms by which herbivore-attacked plants activate their defenses are well studied. By contrast, little is known about the regulatory mechanisms that allow them to control their defensive investment and avoid a defensive overshoot. We characterized a rice (Oryza sativa) WRKY gene, OsWRKY53, whose expression is rapidly induced upon wounding and induced in a delayed fashion upon attack by the striped stem borer (SSB) Chilo suppressalis. The transcript levels of OsWRKY53 are independent of endogenous jasmonic acid but positively regulated by the mitogen-activated protein kinases OsMPK3/OsMPK6. OsWRKY53 physically interacts with OsMPK3/OsMPK6 and suppresses their activity in vitro. By consequence, it modulates the expression of defensive, MPK-regulated WRKYs and thereby reduces jasmonic acid, jasmonoyl-isoleucine, and ethylene induction. This phytohormonal reconfiguration is associated with a reduction in trypsin protease inhibitor activity and improved SSB performance. OsWRKY53 is also shown to be a negative regulator of plant growth. Taken together, these results show that OsWRKY53 functions as a negative feedback modulator of MPK3/MPK6 and thereby acts as an early suppressor of induced defenses. OsWRKY53 therefore enables rice plants to control the magnitude of their defensive investment during early signaling.
Resumo:
Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.