107 resultados para Peri-implantitis
Resumo:
OBJECTIVES: To review the literature regarding the possible association between a previous history of periodontitis and peri-implantitis. MATERIAL AND METHODS: A search of MEDLINE as well as a manual search of articles were conducted. Publications and articles accepted for publication up to January 2008 were included. RESULTS: Out of 951 papers retrieved, a total of three papers were selected for the review. Thus, the available evidence for an association between periodontitis and peri-implantitis is scarce. CONCLUSIONS: Based on three studies with a limited number of patients and considerable variations in study design, different definitions of periodontitis, and confounding variables like smoking that not been accounted for, this systematic review indicates that subjects with a history of periodontitis may be at greater risk for peri-implant infections. It should, however, be stressed that the data to support this conclusion are not very robust.
Resumo:
BACKGROUND To determine the effect of photoactivated disinfection (PAD) using toluidine blue and a light-emitting diode (LED) in the red spectrum (wave length at 625-635 nm) on species associated with periodontitis and peri-implantitis and bacteria within a periodontopathic biofilm. METHODS Sixteen single microbial species including 2 Porphyromonas gingivalis and 2 Aggregatibacter actinomycetemcomitans and a multispecies mixture consisting of 12 species suspended in saline without and with 25% human serum were exposed to PAD. Moreover, single-species biofilms consisting of 2 P. gingivalis and 2 A. actinomycetemcomitans strains and a multi-species biofilm on 24-well-plates, grown on titanium discs and in artificial periodontal pockets were exposed to PAD with and without pretreatment with 0.25% hydrogen peroxide. Changes in the viability were determined by counting the colony forming units (cfu). RESULTS PAD reduced the cfu counts in saline by 1.42 log₁₀ after LED application for 30s and by 1.99 log₁₀ after LED application for 60s compared with negative controls (each p<0.001). Serum did not inhibit the efficacy of PAD. PAD reduced statistically significantly (p<0.05) the cfu counts of the P. gingivalis biofilms. The viability of the A. actinomycetemcomitans biofilms and the multi-species biofilms was statistically significantly decreased when PAD was applied after a pretreatment with 0.25% hydrogen peroxide. The biofilm formed in artificial pockets was more sensitive to PAD with and without pretreatment with hydrogen peroxide compared with those formed on titanium discs. CONCLUSIONS PAD using a LED was effective against periodontopathic bacterial species and reduced viability in biofilms but was not able to completely destroy complex biofilms. The use of PAD following pretreatment with hydrogen peroxide resulted in an additional increase in the antimicrobial activity which may represent a new alternative to treat periodontal and peri-implant infections thus warranting further testing in clinical studies.
Resumo:
OBJECTIVE: The objective of the study is to compare the clinical, microbiological and host-derived effects in the non-surgical treatment of initial peri-implantitis with either adjunctive local drug delivery (LDD) or adjunctive photodynamic therapy (PDT) after 12 months. MATERIALS AND METHODS: Forty subjects with initial peri-implantitis, that is, pocket probing depths (PPD) 4-6 mm with bleeding on probing (BoP) and radiographic bone loss ≤2 mm, were randomly assigned to two treatment groups. All implants were mechanically debrided with titanium curettes and with a glycine-based powder airpolishing system. Implants in the test group (N = 20) received adjunctive PDT, whereas minocycline microspheres were locally delivered into the peri-implant pockets of control implants (N = 20). At sites with residual BoP, treatment was repeated after 3, 6, 9 and 12 months. The primary outcome variable was the change in the number of peri-implant sites with BoP. Secondary outcome variables included changes in PPD, clinical attachment level (CAL), mucosal recession (REC) and in bacterial counts and crevicular fluid (CF) levels of host-derived biomarkers. RESULTS: After 12 months, the number of BoP-positive sites decreased statistically significantly (P < 0.05) from baseline in both groups (PDT: 4.03 ± 1.66-1.74 ± 1.37, LDD: 4.41 ± 1.47-1.55 ± 1.26). A statistically significant (P < 0.05) decrease in PPD from baseline was observed at PDT-treated sites up to 9 months (4.19 ± 0.55 mm to 3.89 ± 0.68 mm) and up to 12 months at LDD-treated sites (4.39 ± 0.77 mm to 3.83 ± 0.85 mm). Counts of Porphyromonas gingivalis and Tannerella forsythia decreased statistically significantly (P < 0.05) from baseline to 6 months in the PDT and to 12 months in the LDD group, respectively. CF levels of IL-1β decreased statistically significantly (P < 0.05) from baseline to 12 months in both groups. No statistically significant differences (P > 0.05) were observed between groups after 12 months with respect to clinical, microbiological and host-derived parameters. CONCLUSIONS: Non-surgical mechanical debridement with adjunctive PDT was equally effective in the reduction of mucosal inflammation as with adjunctive delivery of minocycline microspheres up to 12 months. Adjunctive PDT may represent an alternative approach to LDD in the non-surgical treatment of initial peri-implantitis.
Resumo:
Subcutaneous emphysema are rare complications in periodontology. In most cases, they resolve spontaneously. However, air might disperse into deeper facial spaces causing life-threatening complications such as compression of the tracheobronchial tree or the development of pneumomediastinum. Moreover, microorganisms might spread from the oral cavity into deeper spaces. Hence, rapid diagnosis of subcutaneous emphysema is important. Characteristic signs are both a shiftable swelling and a crepitation. In this case report, the case of a 69-year old man with a subcutaneous emphysema immediately after peri-implantitis therapy with the use of a glycine-based powder air-polishing device is described. Following therapy, air accumulated in the left side of the face. Seven days after non-surgical peri-implantitis therapy, the patient was asymptomatic with complete resolution of the emphysema.
Resumo:
OBJECTIVES Retrospectively, we assessed the likelihood that peri-implantitis was associated with a history of systemic disease, periodontitis, and smoking habits. METHODS Data on probing pocket depth (PPD), bleeding on probing (BOP), and radiographic bone levels were obtained from individuals with dental implants. Peri-implantitis was defined as described by Sanz & Chapple 2012. Control individuals had healthy conditions or peri-implant mucositis. Information on past history of periodontitis, systemic diseases, and on smoking habits was obtained. RESULTS One hundred and seventy-two individuals had peri-implantitis (mean age: 68.2 years, SD ± 8.7), and 98 individuals (mean age: 44.7 years, SD ± 15.9) had implant health/peri-implant mucositis. The mean difference in bone level at implants between groups was 3.5 mm (SE mean ± 0.4, 95% CI: 2.8, 4.3, P < 0.001). A history of cardiovascular disease was found in 27.3% of individuals with peri-implantitis and in 3.0% of individuals in the implant health/peri-implant mucositis group. When adjusting for age, smoking, and gender, odds ratio (OR) of having peri-implantitis and a history of cardiovascular disease was 8.7 (95% CI: 1.9, 40.3 P < 0.006), and odds ratio of having a history of periodontitis was 4.5 (95% CI 2.1, 9.7, P < 0.001). Smoking or gender did not significantly contribute to the outcome. CONCLUSIONS In relation to a diagnosis of peri-implantitis, a high likelihood of comorbidity was expressed by a history of periodontitis and a history of cardiovascular disease.
Resumo:
AIM To assess the clinical and radiographic outcomes applying a combined resective and regenerative approach in the treatment of peri-implantitis. MATERIALS AND METHODS Subjects with implants diagnosed with peri-implantitis (i.e., pocket probing depth (PPD) ≥5 mm with concomitant bleeding on probing (BoP) and ≥2 mm of marginal bone loss or exposure of ≥1 implant thread) were treated by means of a combined approach including the application of a deproteinized bovine bone mineral and a collagen membrane in the intrabony and implantoplasty in the suprabony component of the peri-implant lesion, respectively. The soft tissues were apically repositioned allowing for a non-submerged healing. Clinical and radiographic parameters were evaluated at baseline and 12 months after treatment. RESULTS Eleven subjects with 11 implants were treated and completed the 12-month follow-up. No implant was lost yielding a 100% survival rate. At baseline, the mean PPD and mean clinical attachment level (CAL) were 8.1 ± 1.8 mm and 9.7 ± 2.5 mm, respectively. After 1 year, a mean PPD of 4.0 ± 1.3 mm and a mean CAL of 6.7 ± 2.5 mm were assessed. The differences between the baseline and the follow-up examinations were statistically significant (P = 0.001). The mucosal recession increased from 1.7 ± 1.5 at baseline to 3.0 ± 1.8 mm at the 12-month follow-up (P = 0.003). The mean% of sites with BoP+ around the selected implants decreased from 19.7 ± 40.1 at baseline to 6.1 ± 24.0 after 12 months (P = 0.032). The radiographic marginal bone level decreased from 8.0 ± 3.7 mm at baseline to 5.2 ± 2.2 mm at the 12-month follow-up (P = 0.000001). The radiographic fill of the intrabony component of the defect amounted to 93.3 ± 13.0%. CONCLUSION Within the limits of this study, a combined regenerative and resective approach for the treatment of peri-implant defects yielded positive outcomes in terms of PPD reduction and radiographic defect fill after 12 months.
Resumo:
BACKGROUND Information on the microbiota in peri-implantitis is limited. We hypothesized that neither gender nor a history of periodontitis/smoking or the microbiota at implants differ by implant status. MATERIALS AND METHODS Baseline microbiological samples collected at one implant in each of 166 participants with peri-implantitis and from 47 individuals with a healthy implant were collected and analyzed by DNA-DNA checkerboard hybridization (78 species). Clinical and radiographic data defined implant status. RESULTS Nineteen bacterial species were found at higher counts from implants with peri-implantitis including Aggregatibacter actinomycetemcomitans, Campylobacter gracilis, Campylobacter rectus, Campylobacter showae, Helicobacter pylori, Haemophilus influenzae, Porphyromonas gingivalis, Staphylococcus aureus, Staphylococcus anaerobius, Streptococcus intermedius, Streptococcus mitis, Tannerella forsythia, Treponema denticola, and Treponema socranskii (p < .001). Receiver operating characteristic curve analysis identified T. forsythia, P. gingivalis, T. socranskii, Staph. aureus, Staph. anaerobius, Strep. intermedius, and Strep. mitis in peri-implantitis comprising 30% of the total microbiota. When adjusted for gender (not significant [NS]), smoking status (NS), older age (p = .003), periodontitis history (p < .01), and T. forsythia (likelihood ratio 3.6, 95% confidence interval 1.4, 9.1, p = .007) were associated with peri-implantitis. CONCLUSION A cluster of bacteria including T. forsythia and Staph. aureus are associated with peri-implantitis.
Resumo:
AIMS Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considered as a preventive measure for the onset of peri-implantitis. Therefore, the remit of this working group was to assess the prevalence of peri-implant diseases, as well as risks for peri-implant mucositis and to evaluate measures for the management of peri-implant mucositis. METHODS Discussions were informed by four systematic reviews on the current epidemiology of peri-implant diseases, on potential risks contributing to the development of peri-implant mucositis, and on the effect of patient and of professionally administered measures to manage peri-implant mucositis. This consensus report is based on the outcomes of these systematic reviews and on the expert opinion of the participants. RESULTS Key findings included: (i) meta-analysis estimated a weighted mean prevalence for peri-implant mucositis of 43% (CI: 32-54%) and for peri-implantitis of 22% (CI: 14-30%); (ii) bleeding on probing is considered as key clinical measure to distinguish between peri-implant health and disease; (iii) lack of regular supportive therapy in patients with peri-implant mucositis was associated with increased risk for onset of peri-implantitis; (iv) whereas plaque accumulation has been established as aetiological factor, smoking was identified as modifiable patient-related and excess cement as local risk indicator for the development of peri-implant mucositis; (v) patient-administered mechanical plaque control (with manual or powered toothbrushes) has been shown to be an effective preventive measure; (vi) professional intervention comprising oral hygiene instructions and mechanical debridement revealed a reduction in clinical signs of inflammation; (vii) adjunctive measures (antiseptics, local and systemic antibiotics, air-abrasive devices) were not found to improve the efficacy of professionally administered plaque removal in reducing clinical signs of inflammation. CONCLUSIONS Consensus was reached on recommendations for patients with dental implants and oral health care professionals with regard to the efficacy of measures to manage peri-implant mucositis. It was particularly emphasized that implant placement and prosthetic reconstructions need to allow proper personal cleaning, diagnosis by probing and professional plaque removal.
Resumo:
The treatment of infectious diseases affecting osseointegrated implants in function has become a demanding issue in implant dentistry. Since the early 1990s, preclinical data from animal studies have provided important insights into the etiology, pathogenesis and therapy of peri-implant diseases. Established lesions in animals have shown many features in common with those found in human biopsy material. The current review focuses on animal studies, employing different models to induce peri-implant mucositis and peri-implantitis.
Resumo:
Purpose: A recent in vivo study has shown considerable contamination of internal implant and suprastructure components with great biodiversity, indicating bacterial leakage along the implant-abutment interface, abutment-prosthesis interface, and restorative margins. The goal of the present study was to compare microbiologically the peri-implant sulcus to these internal components on implants with no clinical signs of peri-implantitis and in function for many years. Checkerboard DNA-DNA hybridization was used to identify and quantify 40 species. Material and Methods: Fifty-eight turned titanium Brånemark implants in eight systemically healthy patients (seven women, one man) under regular supportive care were examined. All implants had been placed in the maxilla and loaded with a screw-retained full-arch bridge for an average of 9.6 years. Gingival fluid samples were collected from the deepest sulcus per implant for microbiological analysis. As all fixed restorations were removed, the cotton pellet enclosed in the intra-coronal compartment and the abutment screw were retrieved and microbiologically evaluated. Results: The pellet enclosed in the suprastructure was very similar to the peri-implant sulcus in terms of bacterial detection frequencies and levels for practically all the species included in the panel. Yet, there was virtually no microbial link between these compartments. When comparing the abutment screw to the peri-implant sulcus, the majority of the species were less frequently found, and in lower numbers at the former. However, a relevant link in counts for a lot of bacteria was described between these compartments. Even though all implants in the present study showed no clinical signs of peri-implantitis, the high prevalence of numerous species associated with pathology was striking. Conclusions: Intra-coronal compartments of screw-retained fixed restorations were heavily contaminated. The restorative margin may have been the principal pathway for bacterial leakage. Contamination of abutment screws most likely occurred from the peri-implant sulcus via the implant-abutment interface and abutment-prosthesis interface.
Resumo:
To perform a literature review on peri-implant metastases and primary malignoma and report a case of a pulmonary metastasis around dental implants of the anterior mandibular jaw that mimicked peri-implantitis.
Resumo:
OBJECTIVE Recent review articles have shown that open debridement is more effective in the treatment of peri-implantitis than closed therapy. However, surgery may result in marginal recession and compromise esthetics. The purpose of this study was to assess the efficacy of nonsurgical antimicrobial photodynamic therapy (aPDT) in moderate vs severe defects. METHOD AND MATERIALS The study encompassed 16 patients with a total of 18 ailing implants. Ten of these implants showed moderate bone loss (< 5 mm; Group 1) and eight implants severe defects (5 through 8 mm; Group 2). All implants received aPDT without surgical intervention. At baseline and 2 weeks, 3 months, and 6 months after therapy, peri-implant health was assessed including sulcus bleeding index (SBI), probing depth (PD), distance from implant shoulder to marginal mucosa (DIM), and clinical attachment level (CAL). Radiographic evaluation of distance from implant to bone (DIB) allowed comparison of peri-implant hard tissues after 6 months. RESULTS Baseline values for SBI were comparable in both groups. Three months after therapy, in both groups, SBI and CAL decreased significantly. In contrast, after 6 months, CAL and DIB increased significantly in Group 2, not in Group 1. However, DIM-values were not statistically different 6 months after therapy in both groups. CONCLUSION Within the limits of this 6-month study, nonsurgical aPDT could stop bone resorption in moderate peri-implant defects but not in severe defects. However, marginal tissue recession was not significantly different in both groups at the end of the study. Therefore, especially in esthetically important sites, surgical treatment of severe peri-implantitis defects seems to remain mandatory.
Resumo:
Antimicrobial photodynamic therapy (PDT) has attracted much attention for the treatment of pathogenic biofilm associated with peridontitis and peri-implantitis. However, data from randomized controlled clinical studies (RCTs) are limited and, to some extent, controversial, making it difficult to provide appropriate recommendations. Therefore, the aims of the present study were (a) to provide an overview on the current evidence from RCTs evaluating the potential clinical benefit for the additional use of PDT to subgingival mechanical debridement (ie, scaling and root planing) alone in nonsurgical periodontal therapy; and (b) to provide clinical recommendations for the use of PDT in periodontal practice.
Resumo:
AIM To systematically assess the efficacy of patient-administered mechanical and/or chemical plaque control protocols in the management of peri-implant mucositis (PM). MATERIAL AND METHODS Randomized (RCTs) and Controlled Clinical Trials (CCTs) were identified through an electronic search of three databases complemented by manual search. Identification, screening, eligibility and inclusion of studies was performed independently by two reviewers. Studies without professional intervention or with only mechanical debridement professionally administered were included. Quality assessment was performed by means of the Cochrane Collaboration's tool for assessing risk of bias. RESULTS Eleven RCTs with a follow-up from 3 to 24 months were included. Definition of PM was lacking or heterogeneously reported. Complete resolution of PM was not achieved in any study. One study reported 38% of patients with complete resolution of PM. Surrogate end-point outcomes of PM therapy were often reported. The choice of control interventions showed great variability. The efficacy of powered toothbrushes, a triclosan-containing toothpaste and adjunctive antiseptics remains to be established. High quality of methods and reporting was found in four studies. CONCLUSIONS Professionally- and patient-administered mechanical plaque control alone should be considered the standard of care in the management of PM. Therapy of PM is a prerequisite for the prevention of peri-implantitis.
Resumo:
Purpose: This retrospective study assessed the 10-year outcomes of titanium implants with a sandblasted and acid-etched (SLA) surface in a large cohort of partially edentulous patients. Materials and Methods: Records of patients treated with SLA implants between May 1997 and January 2001 were screened. Eligible patients were contacted and invited to undergo a clinical and radiologic examination. Each implant was classified according to strict success criteria. Results: Three hundred three patients with 511 SLA implants were available for the examination. The mean age of the patients at implant surgery was 48 years. Over the 10-year period, no implant fracture was noted, whereas six implants (1.2%) were lost. Two implants (0.4%) showed signs of suppuration at the 10-year examination, whereas seven implants had a history of peri-implantitis (1.4%) during the 10-year period, but presented with healthy peri-implant soft tissues at examination. The remaining 496 implants fulfilled the success criteria. The mean Plaque Index was 0.65 (±0.64), the mean Sulcus Bleeding Index 1.32 (±0.57), the mean Probing Depth 3.27 mm (±1.06), and the mean distance from the implant shoulder to the mucosal margin value -0.42 mm (±1.27). The radiologic mean distance from the implant shoulder to the first bone-to-implant contact was 3.32 mm (±0.73). Conclusion: The present retrospective analysis resulted in a 10-year implant survival rate of 98.8% and a success rate of 97.0%. In addition, the prevalence of peri-implantitis in this large cohort of orally healthy patients was low with 1.8% during the 10-year period.