40 resultados para Nuclear magnetic resonance spectroscopy.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical maturation of the brain can be studied noninvasively by (1)H magnetic resonance spectroscopy (MRS) in human infants. Detailed time courses of cerebral tissue contents are known for the most abundant metabolites only, and whether or not premature birth affects biochemical maturation of the brain is disputed. Hence, the last trimester of gestation was observed in infants born prematurely, and their cerebral metabolite contents at birth and at expected term were compared with those of fullterm infants. Successful quantitative short-TE (1)H MRS was performed in three cerebral locations in 21 infants in 28 sessions (gestational age 32-43 weeks). The spectra were analyzed with linear combination model fitting, considerably extending the range of observable metabolites to include acetate, alanine, aspartate, cholines, creatines, gamma-aminobutyrate, glucose, glutamine, glutamate, glutathione, glycine, lactate, myo-inositol, macromolecular contributions, N-acetylaspartate, N-acetylaspartylglutamate, o-phosphoethanolamine, scyllo-inositol, taurine, and threonine. Significant effects of age and location were found for many metabolites, including the previously observed neuronal maturation reflected by an increase in N-acetylaspartate. Absolute brain metabolite content in premature infants at term was not considerably different from that in fullterm infants, indicating that prematurity did not affect biochemical brain maturation substantially in the studied population, which did not include infants of extremely low birthweight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cerebral dysfunction occurring in mental disorders can show metabolic disturbances which are limited to circumscribed brain areas. Auditory hallucinations have been shown to be related to defined cortical areas linked to specific language functions. Here, we investigated if the study of metabolic changes in auditory hallucinations requires a functional rather than an anatomical definition of their location and size to allow a reliable investigation by magnetic resonance spectroscopy (MRS). Methods: Schizophrenia patients with (AH; n = 12) and without hallucinations (NH; n = 8) and healthy controls (HC; n = 11) underwent a verbal fluency task in functional MRI (fMRI) to functionally define Broca's and Wernicke's areas. Left and right Heschl's gyri were defined anatomically. Results: The mean distances in native space between the fMRI-defined regions and a corresponding anatomically defined area were 12.4 ± 6.1 mm (range: 2.7–36.1 mm) for Broca's area and 16.8 ± 6.2 mm (range: 4.5–26.4 mm) for Wernicke's area, respectively. Hence, the spatial variance was of similar extent as the size of the investigated regions. Splitting the investigations into a single voxel examination in the frontal brain and a spectroscopic imaging part for the more homogeneous field areas led to good spectral quality for almost all spectra. In Broca's area, there was a significant group effect (p = 0.03) with lower levels of N-acetyl-aspartate (NAA) in NH compared to HC (p = 0.02). There were positive associations of NAA levels in the left Heschl's gyrus with total (p = 0.03) and negative (p = 0.006) PANSS scores. In Broca's area, there was a negative association of myo-inositol levels with total PANSS scores (p = 0.008). Conclusion: This study supports the neurodegenerative hypothesis of schizophrenia only in a frontal region whereas the results obtained from temporal regions are in contrast to the majority of previous studies. Future research should test the hypothesis raised by this study that a functional definition of language regions is needed if neurochemical imbalances are expected to be restricted to functional foci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Docetaxel is one of the most frequently used drugs to treat breast cancer. However, resistance or incomplete response to docetaxel is a major challenge. The aim of this study was to utilize MR metabolomics to identify potential biomarkers of docetaxel resistance in a mouse model for BRCA1-mutated breast cancer. METHODOLOGY High resolution magic angle spinning (HRMAS) (1)H MR spectroscopy was performed on tissue samples obtained from docetaxel-sensitive or -resistant BRCA1-mutated mammary tumors in mice. Measurements were performed on samples obtained before treatment and at 1-2, 3-5 and 6-7 days after a 25 mg/kg dose of docetaxel. The MR spectra were analyzed by multivariate analysis, followed by analysis of the signals of individual compounds by peak fitting and integration with normalization to the integral of the creatine signal and of all signals between 2.9 and 3.6 ppm. RESULTS The HRMAS spectra revealed significant metabolic differences between sensitive and resistant tissue samples. In particular choline metabolites were higher in resistant tumors by more than 50% with respect to creatine and by more than 30% with respect to all signals between 2.9 and 3.6 ppm. Shortly after treatment (1-2 days) the normalized choline metabolite levels were significantly increased by more than 30% in the sensitive group coinciding with the time of highest apoptotic activity induced by docetaxel. Thereafter, choline metabolites in these tumors returned towards pre-treatment levels. No change in choline compounds was observed in the resistant tumors over the whole time of investigation. CONCLUSIONS Relative tissue concentrations of choline compounds are higher in docetaxel resistant than in sensitive BRCA1-mutated mouse mammary tumors, but in the first days after docetaxel treatment only in the sensitive tumors an increase of these compounds is observed. Thus both pre- and post-treatment tissue levels of choline compounds have potential to predict response to docetaxel treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NAFLD (non-alcoholic fatty liver disease) and NASH (non-alcoholic steatohepatitis) are of increasing importance, both in connection with insulin resistance and with the development of liver cirrhosis. Histological samples are still the 'gold standard' for diagnosis; however, because of the risks of a liver biopsy, non-invasive methods are needed. MAS (magic angle spinning) is a special type of NMR which allows characterization of intact excised tissue without need for additional extraction steps. Because clinical MRI (magnetic resonance imaging) and MRS (magnetic resonance spectroscopy) are based on the same physical principle as NMR, translational research is feasible from excised tissue to non-invasive examinations in humans. In the present issue of Clinical Science, Cobbold and co-workers report a study in three animal strains suffering from different degrees of NAFLD showing that MAS results are able to distinguish controls, fatty infiltration and steatohepatitis in cohorts. In vivo MRS methods in humans are not obtainable at the same spectral resolution; however, know-how from MAS studies may help to identify characteristic changes in crowded regions of the magnetic resonance spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One gram of onion added to the food of rats inhibits significantly (p < 0.05) bone resorption as assessed by the urinary excretion of tritium released from bone of 9-week-old rats prelabeled with tritiated tetracycline from weeks 1 to 6. To isolate and identify the bone resorption inhibiting compound from onion, onion powder was extracted and the extract fractionated by column chromatography and medium-pressure liquid chromatography. A single active peak was finally obtained by semipreparative high-performance liquid chromatography. The biological activity of the various fractions was tested in vitro on the activity of osteoclasts to form resorption pits on a mineralized substrate. Medium, containing the various fractions or the pure compound, was added to osteoclasts of new-born rats settled on ivory slices. After 24 h of incubation, the tartrate-resistant acid phosphatase positive multinucleated cells, that is, osteoclasts, were counted. Subsequently, the number of resorption pits was determined. Activity was calculated as the ratio of resorption pits/osteoclasts and was compared to a negative control, that is, medium containing 10% fetal bovine serum only and to calcitonin (10(-12) M) as a positive control. Finally, a single peak inhibited osteoclast activity significantly (p < 0.05). The structure of this compound was elucidated with high-performance liquid chromatography-electrospray ionization-mass spectrometry, time-of-flight electrospray ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. The single peak was identified as gamma-L-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide (GPCS). It has a molecular mass of 306 Da and inhibits dose-dependently the resorption activity of osteoclasts, the minimal effective dose being approximately 2 mM. As no other peak displayed inhibitory activity, it likely is responsible for the effect of onion on bone resorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The voltage-dependent anion-selective channel (VDAC) is an intrinsic β-barrel membrane protein located within the mitochondrial outer membrane where it serves as a pore, connecting the mitochondria to the cytosol. The high-resolution structures of both the human and murine VDACs have been resolved by X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) in 2008. However, the structural data are not completely in line with the findings that were obtained after decades of research on biochemical and functional analysis of VDAC. This discrepancy may be related to the fact that structural biology studies of membrane proteins reveal specific static conformations that may not necessarily represent the physiological state. For example, overexpression of membrane proteins in bacterial inclusion bodies or simply the extraction from the native lipid environment using harsh purification methods (i.e. chaotropic agents) can disturb the physiological conformations and the supramolecular assemblies. To address these potential issues, we have developed a method, allowing rapid one step purification of endogenous VDAC expressed in the native mitochondrial membrane without overexpression of recombinant protein or usage of harsh chaotropic extraction procedures. Using the Saccharomyces cerevisiae isoform 1 of VDAC as a model, this method yields efficient purification, preserving VDAC in a more physiological, native state following extraction from mitochondria. Single particle analysis using transmission electron microscopy (TEM) demonstrated conservation of oligomeric assembly after purification. Maintenance of the native state was evaluated using functional assessment that involves an ATP-binding assay by micro-scale thermophoresis (MST). Using this approach, we were able to determine for the first time the apparent KD for ATP of 1.2 mM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multimodal MR study including relaxometry, diffusion tensor imaging (DTI), and MR spectroscopy was performed on patients with classical phenylketonuria (PKU) and matched controls, to improve our understanding of white matter (WM) lesions. Relaxometry yields information on myelin loss or malformation and may substantiate results from DTI attributed to myelin changes. Relaxometry was used to determine four brain compartments in normal-appearing brain tissue (NABT) and in lesions: water in myelin bilayers (myelin water, MW), water in gray matter (GM), water in WM, and water with long relaxation times (cerebrospinal fluid [CSF]-like signals). DTI yielded apparent diffusion coefficients (ADCs) and fractional anisotropies. MW and WM content were reduced in NABT and in lesions of PKU patients, while CSF-like signals were significantly increased. ADC values were reduced in PKU lesions, but also in the corpus callosum. Diffusion anisotropy was reduced in lesions because of a stronger decrease in the longitudinal than in the transverse diffusion. WM content and CSF-like components in lesions correlated with anisotropy and ADC. ADC values in lesions and in the corpus callosum correlated negatively with blood and brain phenylalanine (Phe) concentrations. Intramyelinic edema combined with vacuolization is a likely cause of the WM alterations. Correlations between diffusivity and Phe concentrations confirm vulnerability of WM to high Phe concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance spectroscopy (MRS) of skeletal muscle has been successfully applied by physiologists over several decades, particularly for studies of high-energy phosphates (by (31)P-MRS) and glycogen (by (13)C-MRS). Unfortunately, the observation of these heteronuclei requires equipment that is typically not available on clinical MR scanners, such as broadband capability and a second channel for decoupling and nuclear Overhauser enhancement (NOE). On the other hand, (1)H-MR spectra of skeletal muscle can be acquired on many routine MR systems and also provide a wealth of physiological information. In particular, studies of intramyocellular lipids (IMCL) attract physiologists and endocrinologists because IMCL levels are related to insulin resistance and thus can lead to a better understanding of major health problems in industrial countries. The combination of (1)H-, (13)C-, and (31)P-MRS gives access to the major long- and short-term energy sources of skeletal muscle. This review summarizes the technical aspects and unique MR-methodological features of the different nuclei. It reviews clinical studies that employed MRS of one or more nuclei, or combinations of MRS with other MR modalities. It also illustrates that MR spectra contain additional physiological information that is not yet used in routine clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To characterise and quantify short-term changes in local inflammation using magnetic resonance imaging (MRI), and to correlate the findings with clinical disease activity in response to infliximab in patients with spondyloarthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the potential benefit of combined respiratory-cardiac triggering for diffusion-weighted imaging (DWI) of kidneys compared to respiratory triggering alone (RT).