64 resultados para Nonsteroidal anti-inflammatory drugs
Resumo:
Neospora caninum represents an important pathogen causing stillbirth and abortion in cattle and neuromuscular disease in dogs. Nitazoxanide (NTZ) and its deacetylated metabolite tizoxanide (TIZ) are nitro-thiazolyl-salicylamide drugs with a broad-spectrum anti-parasitic activity in vitro and in vivo. In order to generate compounds potentially applicable in food and breeding animals, the nitro group was removed, and the thiazole-moiety was modified by other functional groups. We had shown earlier that replacement of the nitro-group by a bromo-moiety did not notably affect in vitro efficacy of the drugs against N. caninum. In this study we report on the characterization of two bromo-derivatives, namely Rm4822 and its de-acetylated putative metabolite Rm4847 in relation to the nitro-compounds NTZ and TIZ. IC(50) values for proliferation inhibition were 4.23 and 4.14 microM for NTZ and TIZ, and 14.75 and 13.68 microM for Rm4822 and Rm4847, respectively. Complete inhibition (IC(99)) was achieved at 19.52 and 22.38 microM for NTZ and TIZ, and 18.21 and 17.66 microM for Rm4822 and Rm4847, respectively. However, in order to exert a true parasiticidal effect in vitro, continuous culture of infected fibroblasts in the presence of the bromo-thiazolide Rm4847 was required for a period of 3 days, while the nitro-compound TIZ required 5 days continuous drug exposure. Both thiazolides induced rapid egress of N. caninum tachyzoites from their host cells, and egress was inhibited by the cell membrane permeable Ca(2+)-chelator BAPTA-AM. Host cell entry by N. caninum tachyzoites was inhibited by Rm4847 but not by TIZ. Upon release from their host cells, TIZ-treated parasites remained associated with the fibroblast monolayer, re-invaded neighboring host cells and resumed proliferation in the absence of the drug. In contrast, Rm4847 inhibited host cell invasion and respective treated tachyzoites did not proliferate further. This demonstrated that bromo- and nitro-thiazolides exhibit differential effects against the intracellular protozoan N. caninum and bromo-thiazolides could represent a valuable alternative to the nitro-thiazolyl-salicylamide drugs.
Resumo:
Sphingosylphosphorylcholine (SPC) is a bioactive lipid that binds to G protein-coupled-receptors and activates various signaling cascades. Here, we show that in renal mesangial cells, SPC not only activates various protein kinase cascades but also activates Smad proteins, which are classical members of the transforming growth factor-beta (TGFbeta) signaling pathway. Consequently, SPC is able to mimic TGFbeta-mediated cell responses, such as an anti-inflammatory and a profibrotic response. Interleukin-1beta-stimulated prostaglandin E(2) formation is dose-dependently suppressed by SPC, which is paralleled by reduced secretory phospholipase A(2) (sPLA(2)) protein expression and activity. This effect is due to a reduction of sPLA(2) mRNA expression caused by inhibited sPLA(2) promoter activity. Furthermore, SPC upregulates the profibrotic connective tissue growth factor (CTGF) protein and mRNA expression. Blocking TGFbeta signaling by a TGFbeta receptor kinase inhibitor causes an inhibition of SPC-stimulated Smad activation and reverses both the negative effect of SPC on sPLA(2) expression and the positive effect on CTGF expression. In summary, our data show that SPC, by mimicking TGFbeta, leads to a suppression of proinflammatory mediator production and stimulates a profibrotic cell response that is often the end point of an anti-inflammatory reaction. Thus, targeting SPC receptors may represent a novel therapeutic strategy to cope with inflammatory diseases.
Resumo:
Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (alpha,beta, gamma, delta) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, alpha-tocopherol (alphaT) and gamma-tocopherol (gammaT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (gammaT-enriched) tocopherols seems to be more potent than supplementation with alphaT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with alphaT only and thus warrants further investigation.
Resumo:
A consensus paper concerning the interaction of anti-rheumatic drugs and reproduction was published in 2006, representing data collected during the year 2004 and 2005. Because of an increasing use of biological agents in women of fertile age, the information was updated for the years 2006 and 2007. Experts disagree whether TNF-inhibitors should be stopped as soon as pregnancy is recognized or may be continued throughout pregnancy. Pregnancy experience with abatacept and rituximab is still too limited to prove their safety for the developing fetus. They must be withdrawn before a planned pregnancy. LEF has not been proven to be a human teratogen. Registries of transplant recipients have shown that cyclosporin (CsA) and tacrolimus do not increase the rate of congenital anomalies, whereas mycophenolate mofetil (MMF) clearly carries a risk for congenital anomalies. Prophylactic withdrawal of drugs before pregnancy is mandatory for abatacept, rituximab, LEF and MMF. Data remain insufficient for gonadal toxicity of immunosuppressive drugs in men and for excretion of these drugs in human breast milk.
Resumo:
OBJECTIVE: The burnout syndrome has been associated with an increased risk of cardiovascular disease. The physiological mechanisms potentially involved in this link are underexplored. Knowing that a chronic low-grade systemic inflammatory state contributes to atherosclerosis, we investigated circulating cytokine levels in relation to burnout symptoms. METHODS: We studied 167 schoolteachers (median, 48 years; range, 23-63 years; 67% women) who completed the Maslach Burnout Inventory with its three subscales emotional exhaustion (EE), lack of accomplishment (LA), and depersonalization (DP). Levels of the proinflammatory cytokine tumor necrosis factor (TNF)-alpha and of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10 were determined in fasting morning plasma samples. The TNF-alpha/IL-4 ratio and the TNF-alpha/IL-10 ratio were computed as two indices of increased inflammatory activity. Analyses were adjusted for demographic factors, medication, lifestyle factors (including sleep quality), metabolic factors, and symptoms of depression and anxiety. RESULTS: Higher levels of total burnout symptoms aggregating the EE, LA, and DP subscales independently predicted higher TNF-alpha levels (DeltaR(2)=.024, P=.046), lower IL-4 levels (DeltaR(2)=.021, P=.061), and a higher TNF-alpha/IL-4 ratio (DeltaR(2)=.040, P=.008). Higher levels of LA predicted decreased IL-4 levels (DeltaR(2)=.041, P=.008) and a higher TNF-alpha/IL-4 ratio (DeltaR(2)=.041, P=.007). The categorical dimensions of the various burnout scales (e.g., burnout yes vs. no) showed no independent relationship with any cytokine measure. CONCLUSION: Burnout was associated with increased systemic inflammation along a continuum of symptom severity rather than categorically. Given that low-grade systemic inflammation promotes atherosclerosis, our findings may provide one explanation for the increased cardiovascular risk previously observed in burned-out individuals.
Resumo:
Lipids serve important functions as membrane constituents and also as energy storing molecules. Besides these functions certain lipid species have now been recognized as signalling molecules that regulate a multitude of cellular responses including cell growth and death, and also inflammatory reactions. Bioactive lipids are generated by hydrolysis from membrane lipids mainly by phospholipases giving rise to fatty acids and lysophospholipids that either directly exert their function or are further converted to active mediators. This review will summarize the present knowledge about bioactive lipids that either promote or attenuate inflammatory reactions. These lipids include polyunsaturated fatty acids (PUFA), eicosanoids including the epoxyeicosatrienoic acids (EET), peroxisome proliferation activating receptor (PPAR) activators, cannabinoids and the sphingolipids ceramide, sphingosine 1-phosphate and sphingosylphosphorylcholine.
Resumo:
The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.
Resumo:
Inflammatory bowel disease (IBD) is a common condition in dogs, and a dysregulated innate immunity is believed to play a major role in its pathogenesis. S100A12 is an endogenous damage-associated molecular pattern molecule, which is involved in phagocyte activation and is increased in serum/fecal samples from dogs with IBD. S100A12 binds to the receptor of advanced glycation end products (RAGE), a pattern-recognition receptor, and results of studies in human patients with IBD and other conditions suggest a role of RAGE in chronic inflammation. Soluble RAGE (sRAGE), a decoy receptor for inflammatory proteins (e.g., S100A12) that appears to function as an anti-inflammatory molecule, was shown to be decreased in human IBD patients. This study aimed to evaluate serum sRAGE and serum/fecal S100A12 concentrations in dogs with IBD. Serum and fecal samples were collected from 20 dogs with IBD before and after initiation of medical treatment and from 15 healthy control dogs. Serum sRAGE and serum and fecal S100A12 concentrations were measured by ELISA, and were compared between dogs with IBD and healthy controls, and between dogs with a positive outcome (i.e., clinical remission, n=13) and those that were euthanized (n=6). The relationship of serum sRAGE concentrations with clinical disease activity (using the CIBDAI scoring system), serum and fecal S100A12 concentrations, and histologic disease severity (using a 4-point semi-quantitative grading system) was tested. Serum sRAGE concentrations were significantly lower in dogs with IBD than in healthy controls (p=0.0003), but were not correlated with the severity of histologic lesions (p=0.4241), the CIBDAI score before (p=0.0967) or after treatment (p=0.1067), the serum S100A12 concentration before (p=0.9214) and after treatment (p=0.4411), or with the individual outcome (p=0.4066). Clinical remission and the change in serum sRAGE concentration after treatment were not significantly associated (p=0.5727); however, serum sRAGE concentrations increased only in IBD dogs with complete clinical remission. Also, dogs that were euthanized had significantly higher fecal S100A12 concentrations than dogs that were alive at the end of the study (p=0.0124). This study showed that serum sRAGE concentrations are decreased in dogs diagnosed with IBD compared to healthy dogs, suggesting that sRAGE/RAGE may be involved in the pathogenesis of canine IBD. Lack of correlation between sRAGE and S100A12 concentrations is consistent with sRAGE functioning as a non-specific decoy receptor. Further studies need to evaluate the gastrointestinal mucosal expression of RAGE in healthy and diseased dogs, and also the formation of S100A12-RAGE complexes.
Resumo:
Epoxyisoprostanes EI (1) and EC (2) are effective inhibitors of the secretion of proinflammatory cytokines IL-6 and IL-12. In detailed studies toward the investigation of the molecular mode of action of these structures, a highly potent lactone (3) derived from 1 was identified. The known isoprostanoids 1 and 2 are most likely precursors of 3, the product of facile intramolecular reaction between the epoxide with the carboxylic acid in 2.
Resumo:
Mutations of STAT3 underlie the autosomal dominant form of hyperimmunoglobulin E syndrome (HIES). STAT3 has critical roles in immune cells and thus, hematopoietic stem cell transplantation (HSCT), might be a reasonable therapeutic strategy in this disease. However, STAT3 also has critical functions in nonhematopoietic cells and dissecting the protean roles of STAT3 is limited by the lethality associated with germline deletion of Stat3. Thus, predicting the efficacy of HSCT for HIES is difficult. To begin to dissect the importance of STAT3 in hematopoietic and nonhematopoietic cells as it relates to HIES, we generated a mouse model of this disease. We found that these transgenic mice recapitulate multiple aspects of HIES, including elevated serum IgE and failure to generate Th17 cells. We found that these mice were susceptible to bacterial infection that was partially corrected by HSCT using wild-type bone marrow, emphasizing the role played by the epithelium in the pathophysiology of HIES.
Resumo:
REASONS FOR PERFORMING STUDY Multicentre Confidential Enquiries into Perioperative Equine Fatalities (CEPEF) have not been conducted since the initial CEPEF Phases 1-3, 20 years ago. OBJECTIVES To collect data on current practice in equine anaesthesia and to recruit participants for CEPEF-4. STUDY DESIGN Online questionnaire survey. METHODS An online questionnaire was prepared and the link distributed internationally to veterinarians possibly performing equine anaesthesia, using emails, posters, flyers and an editorial. The questionnaire included 52 closed, semiclosed and open questions divided into 8 subgroups: demographic data, anaesthetist, anaesthesia management (preoperative, technical equipment, monitoring, drugs, recovery), areas of improvements and risks and motivation for participation in CEPEF-4. Descriptive statistics and Chi-squared tests for comparison of categorical variables were performed. RESULTS A total of 199 questionnaires were completed by veterinarians from 14 different countries. Of the respondents, 43% worked in private hospitals, 36% in private practices and 21% in university teaching hospitals. In 40 institutions (23%) there was at least one diplomate of the European or American colleges of veterinary anaesthesia and analgesia on staff. Individual respondents reported routinely employ the following anaesthesia monitoring modalities: electrocardiography (80%), invasive arterial blood pressures (70%), pulse oximetry (60%), capnography (55%), arterial blood gases (47%), composition of inspired and expired gases (45%) and body temperature (35%). Drugs administered frequently or routinely as part of a standard protocol were: acepromazine (44%), xylazine (68%), butorphanol (59%), ketamine (96%), diazepam (83%), isoflurane (76%), dobutamine (46%), and, as a nonsteroidal anti-inflammatory drug, phenylbutazone (73%) or flunixin meglumine (66%). Recovery was routinely assisted by 40%. The main factors perceived by the respondents to affect outcome of equine anaesthesia were the preoperative health status of the animal and training of the anaesthetist. CONCLUSIONS Current practice in equine anaesthesia varies widely, and the study has highlighted important topics relevant for designing a future prospective multicentre cohort study (CEPEF-4). The Summary is available in Chinese - see Supporting information.
Resumo:
Exposure of biological membranes to reactive oxygen species creates a complex mixture of distinct oxidized phospholipid (OxPL) species, which contribute to the development of chronic inflammatory diseases and metabolic disorders. While the ability of OxPL to modulate biological processes is increasingly recognized, the nature of the biologically active OxPL species and the molecular mechanisms underlying their signaling remain largely unknown. We have employed a combination of mass spectrometry, synthetic chemistry, and immunobiology approaches to characterize the OxPL generated from the abundant phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and investigated their bioactivities and signaling pathways in vitro and in vivo. Our study defines epoxycyclopentenones as potent anti-inflammatory lipid mediators that mimic the signaling of endogenous, pro-resolving prostanoids by activating the transcription factor nuclear factor E2-related factor 2 (Nrf2). Using a library of OxPL variants, we identified a synthetic OxPL derivative, which alleviated endotoxin-induced lung injury and inhibited development of pro-inflammatory T helper (Th) 1 cells. These findings provide a molecular basis for the negative regulation of inflammation by lipid peroxidation products and propose a novel class of highly bioactive compounds for the treatment of inflammatory diseases.
Resumo:
PURPOSE Based on a nation-wide database, this study analysed the influence of methotrexate (MTX), TNF inhibitors and a combination of the two on uveitis occurrence in JIA patients. METHODS Data from the National Paediatric Rheumatological Database in Germany were used in this study. Between 2002 and 2013, data from JIA patients were annually documented at the participating paediatric rheumatological sites. Patients with JIA disease duration of less than 12 months at initial documentation and ≥2 years of follow-up were included in this study. The impact of anti-inflammatory treatment on the occurrence of uveitis was evaluated by discrete-time survival analysis. RESULTS A total of 3,512 JIA patients (mean age 8.3±4.8 years, female 65.7%, ANA-positive 53.2%, mean age at arthritis onset 7.8±4.8 years) fulfilled the inclusion criteria. Mean total follow-up time was 3.6±2.4 years. Uveitis developed in a total of 180 patients (5.1%) within one year after arthritis onset. Uveitis onset after the first year was observed in another 251 patients (7.1%). DMARD treatment in the year before uveitis onset significantly reduced the risk for uveitis: MTX (HR 0.63, p=0.022), TNF inhibitors (HR 0.56, p<0.001) and a combination of the two (HR 0.10, p<0.001). Patients treated with MTX within the first year of JIA had an even a lower uveitis risk (HR 0.29, p<0.001). CONCLUSION The use of DMARDs in JIA patients significantly reduced the risk for uveitis onset. Early MTX use within the first year of disease and the combination of MTX with a TNF inhibitor had the highest protective effect. This article is protected by copyright. All rights reserved.
Resumo:
Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.