30 resultados para Knowledge Sharing, Project Management, Case Study, Quantitative Analysis
Resumo:
Integration of indigenous knowledge and ethnoscientific approaches into contemporary frameworks for conservation and sustainable management of natural resources will become increasingly important in policies on an international and national level. We set the scene on how this can be done by exploring the key conditions and dimensions of a dialogue between ‘ontologies’ and the roles, which ethnosciences could play in this process. First, the roles which ethnosciences in the context of sustainable development were analysed, placing emphasis on the implications arising when western sciences aspire to relate to indigenous forms of knowledge. Secondly, the contributions of ethnosciences to such an ‘inter-ontological dialogue’ were explored, based on an ethnoecological study of the encounter of sciences and indigenous knowledge in the Andes of Bolivia, and reviewed experiences from mangrove systems in Kenya, India and Sri Lanka, and from case-studies in other ecosystems world-wide.
Resumo:
The WOCAT network has collected, documented, and assessed more than 350 case studies on promising and good practices of SLM. Information on on- and off-site benefits of different SLM types, as well as on investment and maintenance costs is available, sometimes in quantitative and often in qualitative form. The objective of the present paper is to analyse what kind of economic benefits accrue to local stakeholders, and to better understand how these benefits compare to investment and maintenance costs. The large majority of the technologies contained in the database are perceived by land users as having positive benefits that outweigh costs in the long term. About three quarters of them also have positive or at least neutral benefits in the short term. The analysis shows that many SLM measures exist which can generate important benefits to land users, but also to other stakeholders. However, methodological issues need to be tackled and further quantitative and qualitative data are needed to better understand and support the adoption of SLM measures. Keywords: Sustainable Land Management, Costs, Benefits, Technologies
Resumo:
BACKGROUND Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. METHODS A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. RESULTS In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. CONCLUSION The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection.
Resumo:
This manuscript deals with the adaptation of quartz-microfabrics to changing physical deformation conditions, and discusses their preservation potential during subsequent retrograde deformation. Using microstructural analysis, a sequence of recrystallization processes in quartz, ranging from Grain-Boundary Migration Recrystallization (GBM) over Subgrain-Rotation Recrystallization (SGR) to Bulging Nucleation (BLG) is detected for the Simplon fault zone (SFZ) from the low strain rim towards the internal high strain part of the large-scale shear zone. Based on: (i) the retrograde cooling path; (ii) estimates of deformation temperatures; and (iii) spatial variation of dynamic recrystallization processes and different microstructural characteristics, continuous strain localization with decreasing temperature is inferred. In contrast to the recrystallization microstructures, crystallographic preferred orientations (CPO) have a longer memory. CPO patterns indicative of prism and rhomb glide systems in mylonitic quartz veins, overprinted at low temperatures (�400 �C), suggest inheritance of a high-temperature deformation. In this way, microstructural, textural and geochemical analyses provide information for several million years of the deformation history. The reasons for such incomplete resetting of the rock texture is that strain localization is caused by change in effective viscosity contrasts related to temporal large- and small-scale temperature changes during the evolution of such a long-lived shear zone. The spatially resolved, quantitative investigation of quartz microfabrics and associated recrystallization processes therefore provide great potential for an improved understanding of the geodynamics of large-scale shear zones.
Resumo:
The long-term integrity of protected areas (PAs), and hence the maintenance of related ecosystem services (ES), are dependent on the support of local people. In the present study, local people's perceptions of ecosystem services from PAs and factors that govern local preferences for PAs are assessed. Fourteen study villages were randomly selected from three different protected forest areas and one control site along the southern coast of Côte d'Ivoire. Data was collected through a mixed-method approach, including qualitative semi-structured interviews and a household survey based on hypothetical choice scenarios. Local people's perceptions of ecosystem service provision was decrypted through qualitative content analysis, while the relation between people's preferences and potential factors that affect preferences were analyzed through multinomial models. This study shows that rural villagers do perceive a number of different ecosystem services as benefits from PAs in Côte d'Ivoire. The results based on quantitative data also suggest that local preferences for PAs and related ecosystem services are driven by PAs' management rules, age, and people's dependence on natural resources.
Resumo:
Detrital provenance analyses in orogenic settings, in which sediments are collected at the outlet of a catchment, have become an important tool to estimate how erosion varies in space and time. Here we present how Raman Spectroscopy on Carbonaceous Material (RSCM) can be used for provenance analysis. RSCM provides an estimate of the peak temperature (RSCM-T) experienced during metamorphism. We show that we can infer modern erosion patterns in a catchment by combining new measurements on detrital sands with previously acquired bedrock data. We focus on the Whataroa catchment in the Southern Alps of New Zealand and exploit the metamorphic gradient that runs parallel to the main drainage direction. To account for potential sampling biases, we also quantify abrasion properties using flume experiments and measure the total organic carbon content in the bedrock that produced the collected sands. Finally, we integrate these parameters into a mass-conservative model. Our results first demonstrate that RSCM-T can be used for detrital studies. Second, we find that spatial variations in tracer concentration and erosion have a first-order control on the RSCM-T distributions, even though our flume experiments reveal that weak lithologies produce substantially more fine particles than do more durable lithologies. This result implies that sand specimens are good proxies for mapping spatial variations in erosion when the bedrock concentration of the target mineral is quantified. The modeling suggests that highest present-day erosion rates (in Whataroa catchment) are not situated at the range front but around 10 km into the mountain belt.
Resumo:
The private-collective innovation model proposes incentives for individuals and firms to privately invest resources to create public goods innovations. Such innovations are characterized by non-rivalry and non-exclusivity in consumption. Examples include open source software, user-generated media products, drug formulas, and sport equipment designs. There is still limited empirical research on private-collective innovation. We present a case study to (1) provide empirical evidence of a case of private-collective innovation, showing specific benefits, and (2) to extend the private-collective innovation model by analyzing the hidden costs for the company involved. We examine the development of the Nokia Internet Tablet, which builds on both proprietary and open source software development, and that involves both Nokia developers and volunteers who are not employed by the company. Seven benefits for Nokia are identified, as are five hidden costs: difficulty to differentiate, guarding business secrets, reducing community entry barriers, giving up control, and organizational inertia. We examine the actions taken by the management to mitigate these costs throughout the development period.
Resumo:
Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage.