44 resultados para Intrasubject repeatability
Resumo:
This study investigated the changes in somatic cell counts (SCC) in different fractions of milk, with special emphasis on the foremilk and cisternal milk fractions. Therefore, in Experiment 1, quarter milk samples were defined as strict foremilk (F), cisternal milk (C), first 400 g of alveolar milk (A1), and the remaining alveolar milk (A2). Experiment 2 included 6 foremilk fractions (F1 to F6), consisting of one hand-stripped milk jet each, and the remaining cisternal milk plus the entire alveolar milk (RM). In Experiment 1, changes during milking indicated the importance of the sampled milk fraction for measuring SCC because the decrease in the first 3 fractions (F, C, and A1) was enormous in milk with high total quarter SCC. The decline in SCC from F to C was 50% and was 80% from C to A1. Total quarter SCC presented a value of approximately 20% of SCC in F or 35% of SCC in C. Changes in milk with low or very low SCC were marginal during milking. Fractions F and C showed significant differences in SCC among different total SCC concentrations. These differences disappeared with the alveolar fractions A1 and A2. In Experiment 2, a more detailed investigation of foremilk fractions supported the findings of Experiment 1. A significant decline in the foremilk fractions even of F1 to F6 was observed in high-SCC milk at concentrations >350 x 10(3) cells/mL. Although one of these foremilk fractions presented only 0.1 to 0.2% of the total milk, the SCC was 2- to 3-fold greater than the total quarter milk SCC. Because the trait of interest (SCC) was measured directly by using the DeLaval cell counter (DCC), the quality of measurement was tested. Statistically interesting factors (repeatability, recovery rate, and potential matrix effects of milk) proved that the DCC is a useful tool for identifying the SCC of milk samples, and thus of grading udder health status. Generally, the DCC provides reliable results, but one must consider that SCC even in strict foremilk can differ dramatically from SCC in the total cisternal fraction, and thus also from SCC in the alveolar fraction.
Resumo:
BACKGROUND: Digital volume pulse (DVP), a noninvasive method for indirect assessment of arterial stiffness, was not tested previously in patients with end-stage renal disease (ESRD). Therefore, we compared the DVP-derived stiffness index (SI(DVP)) with aortic pulse wave velocity (PWV) determined by means of Doppler ultrasonography in 2 groups of patients with ESRD and analyzed the correlation between SI(DVP) and comorbidity. METHODS: Photoplethysmography was performed on the index finger of the dominant hand or the hand from the nonfistula arm in 49 renal transplant (TX) recipients and 48 hemodialysis (HD) patients. Pulse curves were analyzed with computer assistance. Comorbidity was assessed by using an established index. RESULTS: The intrasubject variability of SI(DVP) was 5.7%. SI(DVP) and aortic PWV values correlated significantly (r = 0.66; P = 0.001) in patients with ESRD. SI(DVP) could not be assessed reliably in 25% and 6% of HD patients and TX recipients, respectively. Multivariate regression analyses showed that SI(DVP) increased with age in both HD patients and TX recipients (r = 0.61; P < 0.001) and with systolic blood pressure (r = 0.53; P < 0.025), mean arterial pressure (r = 0.47; P < 0.05), and pulse pressure (r = 0.52; P = 0.02) in TX recipients. Severity of comorbid status was associated highly with individual residuals of age-adjusted SI(DVP) in HD patients and TX recipients (P < 0.001). CONCLUSION: DVP allows the measurement of arterial stiffness in most, but not all, patients with ESRD. SI(DVP) values correlate with comorbidity in HD patients and TX recipients.
Resumo:
Traditionally, non-invasive monitoring of tidal volume in infants has been performed using impedance plethysmography analyzed using a one or two compartment model. We developed a new laser system for use in infants, which measures antero-posterior movement of the chest wall during quiet sleep. In 24 unsedated or sedated infants (11 healthy, 13 with respiratory disease), we examined whether the analysis of thoracoabdominal movement based on a three compartment model could more accurately estimate tidal volume in comparison to V(T) measured at the mouth. Using five laser signals, chest wall movements were measured at the right and left, upper and lower ribcage and the abdomen. Within the tidal volume range from 4.6 to 135.7 ml, a three compartment model showed good short term repeatability and the best agreement with tidal volume measured at mouth (r(2) = 0.86) compared to that of a single compartment model (r(2) = 0.62, P < 0.0001) and a two compartment model (r(2) = 0.82, P < 0.01), particularly in the presence of respiratory disease. Three compartment modeling of a 5 laser thoracoabdominal monitoring permits more accurate estimates of tidal volume in infants and potentially of regional differences of chest wall displacement in future studies.
Resumo:
High-frequency respiratory impedance data measured noninvasively by the high-speed interrupter technique (HIT), particularly the first antiresonance frequency (f(ar,1)), is related to airway wall mechanics. The aim of this study was to evaluate the feasibility and repeatability of HIT in unsedated pre-term infants, and to compare values of f(ar,1) from 18 pre-term (post-conceptional age 32-37 weeks, weight 1,730-2,910 g) and 18 full-term infants (42-47 weeks, 3,920-5,340 g). Among the pre-term infants, there was good short-term repeatability of f(ar,1) within a single sleep epoch (mean (sd) coefficient of variance: 8 (1.7)%), but 95% limits of agreement for repeated measures of f(ar,1) after 3-8 h were relatively wide (-41 Hz; 37 Hz). f(ar,1) was significantly lower in pre-term infants (199 versus 257 Hz), indicating that wave propagation characteristics in pre-term airways are different from those of full-term infants. The present authors suggest that this is consistent with developmental differences in airway wall structure and compliance, including the influence of the surrounding tissue. Since flow limitation is determined by wave propagation velocity and airway cross-sectional area, it was hypothesised that the physical ability of the airways to carry large flows is fundamentally different in pre-term than in full-term infants.
Resumo:
BACKGROUND: We studied the association of baseline fasting plasma glucose (FPG) levels with survival and coronary artery disease (CAD) progression among postmenopausal women without unstable angina. METHODS: Women were recruited from seven centers in the Women's Angiographic Vitamin and Estrogen Trial (WAVE) (n = 423). Event follow-up was available for 400 women (65.1 +/- 8.5 years, 66% white, 92% hypertensive, 19% smokers, 67% hypercholesterolemic). Thirty-eight percent of the women had diabetes or FPG > 125 mg/dL, and 21% had a fasting glucose 100-125 mg/dL. Follow-up angiography was performed in 304 women. Cox regression was used to model survival from a composite outcome of death or myocardial infarction (D/MI, 26 events; median follow-up 2.4 years). Angiographic progression was analyzed quantitatively using linear regression accounting for baseline minimum lumen diameter (MLD), follow-up time, and intrasubject correlations using generalized estimating equations. Regression analyses were adjusted for follow-up time, baseline age, treatment assignment, and Framingham risk (excluding diabetes). RESULTS: Women with impaired fasting glucose/diabetes mellitus (IFG/DM) had a relative risk (RR) of D/MI of 4.2 ( p = 0.009). In all women, each 10 mg/dL increase in FPG was associated with an 11% increase ( p < 0.001) in the hazard of D/MI. Each 10 mg/dL increase in FPG was associated with a 6.8 mum decrease in MLD over the follow-up period ( p = 0.005). CONCLUSIONS: Higher FPG is associated with increased risk of D/MI and greater narrowing of the coronary lumen in women with CAD. Aggressive monitoring of glucose levels may be beneficial for secondary CAD prevention.
Resumo:
INTRODUCTION: It has been suggested that infants dynamically regulate their tidal flow and end-expiratory volume level. The interaction between muscle activity, flow and lung volume in spontaneously sleeping neonates is poorly studied, since it requires the assessment of transcutaneous electromyography of respiratory muscles (rEMG) in matched comparison to lung function measurements. METHODS: After determining feasibility and repeatability of rEMG in 20 spontaneously sleeping healthy neonates, we measured the relative impact of intercostal and diaphragmatic EMG activity in direct comparison to the resulting tidal flow and FRC. RESULTS: We found good feasibility, repeatability and correlation of timing indices between rEMG activity and flow. The rEMG amplitude was significantly dependent on the resistive load of the face mask. Diaphragm and intercostal muscle activity commenced prior to the onset of flow and remained active during the expiratory cycle. The relative contribution of intercostal and diaphragmatic activity to flow was variable and changed dynamically. CONCLUSION: Using matched rEMG, air flow and lung volume measurements, we have found good feasibility and repeatability of intercostal and diaphragm rEMG measurements and provide the first quantitative measures of the temporal relationship between muscle activity and flow in spontaneously sleeping healthy neonates. Lung mechanical function is dynamically regulated and adapts on a breath to breath basis. So, non-invasive rEMG measurements alone or in combination with lung function might provide a more comprehensive picture of pulmonary mechanics in future studies. The data describing the timing of EMG and flow may be important for future studies of EMG triggered mechanical ventilation.
Resumo:
BACKGROUND: The interrupter technique is increasingly used in preschool children to assess airway resistance (Rint). Use of a bacterial filter is essential for prevention of cross-infection in a clinical setting. It is not known how large an effect this extra resistance and compliance exert upon interrupter measurements, especially on obstructive airways and in smaller children. We aim to determine the contribution of the filter to Rint, in a sample of children attending lung function testing at an asthma clinic. METHODS: Interrupter measurements were performed according to ATS/ERS guidelines during quiet normal breathing at an expiratory flow trigger of 200 ml s(-1), with the child seated upright with cheeks supported and wearing a nose clip. A minimum of 10 interrupter measurements was made with and without a bacterial filter. Spirometric and plethysmographic tests were also performed. RESULTS: A small but significant difference (0.12 (95% CI 0.06-0.17) kPa s L(-1), P = 0.0002) with 2x SD of 0.34 kPa s L(-1) was observed between Rint with and without filter in 39 children, with a large spread. This difference was not dependent on Rint magnitude, age or height, nor on lung function parameters (effective resistance, forced expiratory volume in 1 sec, and maximal expiratory flow at 50% of expired vital capacity). CONCLUSIONS: A bacterial filter causes a small difference but is not clinically significant, with a wide spread comparable to the variability of the technique and recommended cut-offs for assessing repeatability and bronchodilation. Age, height or severity of obstruction need not be corrected for in general.
Resumo:
Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies.
Resumo:
Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.
Resumo:
The definition of spinal instability is still controversial. For this reason, it is essential to better understand the difference in biomechanical behaviour between healthy and degenerated human spinal segments in vivo. A novel computer-assisted instrument was developed with the objective to characterize the biomechanical parameters of the spinal segment. Investigation of the viscoelastic properties as well as the dynamic spinal stiffness was performed during a minimally invasive procedure (microdiscectomy) on five patients. Measurements were performed intraoperatively and the protocol consisted of a dynamic part, where spinal stiffness was computed, and a static part, where force relaxation of the segment under constant elongation was studied. The repeatability of the measurement procedure was demonstrated with five replicated tests. The spinal segment tissues were found to have viscoelastic properties. Preliminary tests confirmed a decrease in stiffness after decompression surgery. Patients with non-relaxed muscles showed higher stiffness and relaxation rate compared to patients with relaxed muscles, which can be explained by the contraction and relaxation reflex of muscles under fast and then static elongation. The results show the usefulness of the biomechanical characterization of the human lumbar spinal segment to improve the understanding of the contribution of individual anatomical structures to spinal stability.
Resumo:
PURPOSE: To prospectively determine reproducibility of magnetic resonance (MR) angiography and MR spectroscopy of deoxymyoglobin in assessment of collateral vessels and tissue perfusion in patients with critical limb ischemia (CLI) and to follow changes in patients undergoing intramuscular vascular endothelial growth factor (pVEGF)-C gene therapy, percutaneous transluminal angioplasty, supervised exercise training, or no therapy. MATERIALS AND METHODS: Study and gene therapy protocols were approved, and all patients gave written informed consent. To determine repeatability and reproducibility, seven patients underwent MR angiography and five underwent MR spectroscopy. The techniques were used to judge disease progress in 12 other patients with or without therapy: MR angiography to help determine change in visualization of collateral vessels and MR spectroscopy to help assess change in perfusion at proximal and distal calf levels. MR angiographic results were subjectively analyzed by three blinded readers. Intraobserver variability was expressed as 95% confidence interval (CI) (n=7); interobserver variability, as kappa statistic (n=15). Reexamination variability of MR spectroscopy was given as 95% CI for subsequent recovery times, and correlation with disease extent was calculated with Kendall taub rank correlation. Fisher-Yates test was used to correlate changes with pressure measurements and clinical course. RESULTS: Intraobserver and interobserver concordance was sensitive for detection of collateral vessels. Intraobserver agreement was 85.7% (95% CI: 42.1%, 99.6%). Interobserver agreement was high for small collateral vessels (kappa=0.74, P <.001) and fair for large collateral vessels (kappa=0.36, P=.002). MR spectroscopy was reproducible (95% CI: +/-26 seconds for proximal, +/-21 seconds for distal) and showed a correlation with disease extent (proximal calf, taub=0.84, P <.001; distal calf, taub=0.68, P=.04). Small collateral vessels increased over time (P=.04) but did not correlate with pressure measurements and clinical course. Recovery time correlated with clinical course (proximal calf, P=.03; distal calf, P=.005). CONCLUSION: MR angiography and MR spectroscopy of deoxymyoglobin can help document changes in visualization of collateral vessels and tissue perfusion in patients with CLI.
Resumo:
OBJECTIVE: The aim of this study was to establish and validate a three-dimensional imaging protocol for the assessment of Computed Tomography (CT) scans of abdominal aortic aneurysms in UK EVAR trials patients. Quality control and repeatability of anatomical measurements is important for the validity of any core laboratory. METHODS: Three different observers performed anatomical measurements on 50 preoperative CT scans of aortic aneurysms using the Vitrea 2 three-dimensional post-imaging software in a core laboratory setting. We assessed the accuracy of intra and inter observer repeatability of measurements, the time required for collection of measurements, 3 different levels of automation and 3 different automated criteria for measurement of neck length. RESULTS: None of the automated neck length measurements demonstrated sufficient accuracy and it was necessary to perform checking of the important automated landmarks. Good intra and limited inter observer agreement were achieved with three-dimensional assessment. Complete assessment of the aneurysm and iliacs took an average (SD) of 17.2 (4.1) minutes. CONCLUSIONS: Aortic aneurysm anatomy can be assessed reliably and quickly using three-dimensional assessment but for scans of limited quality, manual checking of important landmarks remains necessary. Using a set protocol, agreement between observers is satisfactory but not as good as within observers.
Resumo:
OBJECTIVE: To evaluate the agreement of blood pressure measurements and hypertension scores obtained by use of 3 indirect arterial blood pressure measurement devices in hospitalized dogs. Design-Diagnostic test evaluation. ANIMALS: 29 client-owned dogs. PROCEDURES: 5 to 7 consecutive blood pressure readings were obtained from each dog on each of 3 occasions with a Doppler ultrasonic flow detector, a standard oscillometric device (STO), and a high-definition oscillometric device (HDO). RESULTS: When the individual sets of 5 to 7 readings were evaluated, the coefficient of variation for systolic arterial blood pressure (SAP) exceeded 20% for 0% (Doppler), 11 % (STO), and 28% (HDO) of the sets of readings. After readings that exceeded a 20% coefficient of variation were discarded, repeatability was within 25 (Doppler), 37 (STO), and 39 (HDO) mm Hg for SAP. Correlation of mean values among the devices was between 0.47 and 0.63. Compared with Doppler readings, STO underestimated and HDO overestimated SAP. Limits of agreement between mean readings of any 2 devices were wide. With the hypertension scale used to score SAP, the intraclass correlation of scores was 0.48. Linear-weighted inter-rater reliability between scores was 0.40 (Doppler vs STO), 0.38 (Doppler vs HDO), and 0.29 (STO vs HDO). CONCLUSIONS AND CLINICAL RELEVANCE: Results of this study suggested that no meaningful clinical comparison can be made between blood pressure readings obtained from the same dog with different indirect blood pressure measurement devices.
Resumo:
HYPOTHESIS Facial nerve monitoring can be used synchronous with a high-precision robotic tool as a functional warning to prevent of a collision of the drill bit with the facial nerve during direct cochlear access (DCA). BACKGROUND Minimally invasive direct cochlear access (DCA) aims to eliminate the need for a mastoidectomy by drilling a small tunnel through the facial recess to the cochlea with the aid of stereotactic tool guidance. Because the procedure is performed in a blind manner, structures such as the facial nerve are at risk. Neuromonitoring is a commonly used tool to help surgeons identify the facial nerve (FN) during routine surgical procedures in the mastoid. Recently, neuromonitoring technology was integrated into a commercially available drill system enabling real-time monitoring of the FN. The objective of this study was to determine if this drilling system could be used to warn of an impending collision with the FN during robot-assisted DCA. MATERIALS AND METHODS The sheep was chosen as a suitable model for this study because of its similarity to the human ear anatomy. The same surgical workflow applicable to human patients was performed in the animal model. Bone screws, serving as reference fiducials, were placed in the skull near the ear canal. The sheep head was imaged using a computed tomographic scanner and segmentation of FN, mastoid, and other relevant structures as well as planning of drilling trajectories was carried out using a dedicated software tool. During the actual procedure, a surgical drill system was connected to a nerve monitor and guided by a custom built robot system. As the planned trajectories were drilled, stimulation and EMG response signals were recorded. A postoperative analysis was achieved after each surgery to determine the actual drilled positions. RESULTS Using the calibrated pose synchronized with the EMG signals, the precise relationship between distance to FN and EMG with 3 different stimulation intensities could be determined for 11 different tunnels drilled in 3 different subjects. CONCLUSION From the results, it was determined that the current implementation of the neuromonitoring system lacks sensitivity and repeatability necessary to be used as a warning device in robotic DCA. We hypothesize that this is primarily because of the stimulation pattern achieved using a noninsulated drill as a stimulating probe. Further work is necessary to determine whether specific changes to the design can improve the sensitivity and specificity.
Resumo:
Displacements of the Earth’s surface caused by tidal and non-tidal loading forces are relevant in high-precision space geodesy. Some of the corrections are recommended by the international scientific community to be applied at the observation level, e.g., ocean tidal loading (OTL) and atmospheric tidal loading (ATL). Non-tidal displacement corrections are in general recommended not to be applied in the products of the International Earth Rotation and Reference Systems Service, in particular atmospheric non-tidal loading (ANTL), oceanic and hydrological non-tidal corrections. We assess and compare the impact of OTL, ATL and ANTL on SLR-derived parameters by reprocessing 12 years of SLR data considering and ignoring individual corrections. We show that loading displacements have an influence not only on station long-term stability, but also on geocenter coordinates, Earth Rotation Parameters, and satellite orbits. Applying the loading corrections reduces the amplitudes of annual signals in the time series of geocenter and station coordinates. The general improvement of the SLR station 3D coordinate repeatability when applying OTL, ATL and ANTL corrections are 19.5 %, 0.2 % and 3.3 % respectively, w.r.t. the solutions without loading corrections. ANTL corrections play a crucial role in the combination of optical (SLR) and microwave (GNSS, VLBI, DORIS) space geodetic observation techniques, because of the so-called Blue-Sky effect: SLR measurements can be carried out only under cloudless sky conditions—typically during high air pressure conditions, when the Earth’s crust is deformed, whereas microwave observations are weather-independent. Thus, applying the loading corrections at the observation level improves SLR-derived products as well as the consistency with microwave-based results. We assess the Blue-Sky effect on SLR stations and the consistency improvement between GNSS and SLR solutions when ANTL corrections are included. The omission of ANTL corrections may lead to inconsistencies between SLR and GNSS solutions of up to 2.5 mm for inland stations. As a result, the estimated GNSS–SLR coordinate differences correspond better to the local ties at the co-located stations when applying ANTL corrections.