31 resultados para Interpolation variance
Resumo:
The first part of this paper provides a comprehensive and self-contained account of the interrelationships between algebraic properties of varieties and properties of their free algebras and equational consequence relations. In particular, proofs are given of known equivalences between the amalgamation property and the Robinson property, the congruence extension property and the extension property, and the flat amalgamation property and the deductive interpolation property, as well as various dependencies between these properties. These relationships are then exploited in the second part of the paper in order to provide new proofs of amalgamation and deductive interpolation for the varieties of lattice-ordered abelian groups and MV-algebras, and to determine important subvarieties of residuated lattices where these properties hold or fail. In particular, a full description is given of all subvarieties of commutative GMV-algebras possessing the amalgamation property.
Resumo:
Identifying and comparing different steady states is an important task for clinical decision making. Data from unequal sources, comprising diverse patient status information, have to be interpreted. In order to compare results an expressive representation is the key. In this contribution we suggest a criterion to calculate a context-sensitive value based on variance analysis and discuss its advantages and limitations referring to a clinical data example obtained during anesthesia. Different drug plasma target levels of the anesthetic propofol were preset to reach and maintain clinically desirable steady state conditions with target controlled infusion (TCI). At the same time systolic blood pressure was monitored, depth of anesthesia was recorded using the bispectral index (BIS) and propofol plasma concentrations were determined in venous blood samples. The presented analysis of variance (ANOVA) is used to quantify how accurately steady states can be monitored and compared using the three methods of measurement.
Resumo:
Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.
Resumo:
Previous research suggests that the personality of a relationship partner predicts not only the individual’s own satisfaction with the relationship but also the partner’s satisfaction. Based on the actor–partner interdependence model, the present research tested whether actor and partner effects of personality are biased when the same method (e.g., self-report) is used for the assessment of personality and relationship satisfaction and, consequently, shared method variance is not controlled for. Data came from 186 couples, of whom both partners provided self- and partner reports on the Big Five personality traits. Depending on the research design, actor effects were larger than partner effects (when using only self-reports), smaller than partner effects (when using only partner reports), or of about the same size as partner effects (when using self- and partner reports). The findings attest to the importance of controlling for shared method variance in dyadic data analysis.
Resumo:
Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.
Resumo:
Many observed time series of the global radiosonde or PILOT networks exist as fragments distributed over different archives. Identifying and merging these fragments can enhance their value for studies on the three-dimensional spatial structure of climate change. The Comprehensive Historical Upper-Air Network (CHUAN version 1.7), which was substantially extended in 2013, and the Integrated Global Radiosonde Archive (IGRA) are the most important collections of upper-air measurements taken before 1958. CHUAN (tracked) balloon data start in 1900, with higher numbers from the late 1920s onward, whereas IGRA data start in 1937. However, a substantial fraction of those measurements have not been taken at synoptic times (preferably 00:00 or 12:00 GMT) and on altitude levels instead of standard pressure levels. To make them comparable with more recent data, the records have been brought to synoptic times and standard pressure levels using state-of-the-art interpolation techniques, employing geopotential information from the National Oceanic and Atmospheric Administration (NOAA) 20th Century Reanalysis (NOAA 20CR). From 1958 onward the European Re-Analysis archives (ERA-40 and ERA-Interim) available at the European Centre for Medium-Range Weather Forecasts (ECMWF) are the main data sources. These are easier to use, but pilot data still have to be interpolated to standard pressure levels. Fractions of the same records distributed over different archives have been merged, if necessary, taking care that the data remain traceable back to their original sources. If possible, station IDs assigned by the World Meteorological Organization (WMO) have been allocated to the station records. For some records which have never been identified by a WMO ID, a local ID above 100 000 has been assigned. The merged data set contains 37 wind records longer than 70 years and 139 temperature records longer than 60 years. It can be seen as a useful basis for further data processing steps, most notably homogenization and gridding, after which it should be a valuable resource for climatological studies. Homogeneity adjustments for wind using the NOAA-20CR as a reference are described in Ramella Pralungo and Haimberger (2014). Reliable homogeneity adjustments for temperature beyond 1958 using a surface-data-only reanalysis such as NOAA-20CR as a reference have yet to be created. All the archives and metadata files are available in ASCII and netCDF format in the PANGAEA archive
Resumo:
Strict next-to-leading order (NLO) results for the dilepton production rate from a QCD plasma at temperatures above a few hundred MeV suffer from a breakdown of the loop expansion in the regime of soft invariant masses M 2 ≪ (πT)2. In this regime an LPM resummation is needed for obtaining the correct leading-order result. We show how to construct an interpolation between the hard NLO and the leading-order LPM expression, which is theoretically consistent in both regimes and free from double counting. The final numerical results are presented in a tabulated form, suitable for insertion into hydrodynamical codes.
Resumo:
We propose a nonparametric variance estimator when ranked set sampling (RSS) and judgment post stratification (JPS) are applied by measuring a concomitant variable. Our proposed estimator is obtained by conditioning on observed concomitant values and using nonparametric kernel regression.
Resumo:
The main method of proving the Craig Interpolation Property (CIP) constructively uses cut-free sequent proof systems. Until now, however, no such method has been known for proving the CIP using more general sequent-like proof formalisms, such as hypersequents, nested sequents, and labelled sequents. In this paper, we start closing this gap by presenting an algorithm for proving the CIP for modal logics by induction on a nested-sequent derivation. This algorithm is applied to all the logics of the so-called modal cube.
Resumo:
This package includes various Mata functions. kern(): various kernel functions; kint(): kernel integral functions; kdel0(): canonical bandwidth of kernel; quantile(): quantile function; median(): median; iqrange(): inter-quartile range; ecdf(): cumulative distribution function; relrank(): grade transformation; ranks(): ranks/cumulative frequencies; freq(): compute frequency counts; histogram(): produce histogram data; mgof(): multinomial goodness-of-fit tests; collapse(): summary statistics by subgroups; _collapse(): summary statistics by subgroups; gini(): Gini coefficient; sample(): draw random sample; srswr(): SRS with replacement; srswor(): SRS without replacement; upswr(): UPS with replacement; upswor(): UPS without replacement; bs(): bootstrap estimation; bs2(): bootstrap estimation; bs_report(): report bootstrap results; jk(): jackknife estimation; jk_report(): report jackknife results; subset(): obtain subsets, one at a time; composition(): obtain compositions, one by one; ncompositions(): determine number of compositions; partition(): obtain partitions, one at a time; npartitionss(): determine number of partitions; rsubset(): draw random subset; rcomposition(): draw random composition; colvar(): variance, by column; meancolvar(): mean and variance, by column; variance0(): population variance; meanvariance0(): mean and population variance; mse(): mean squared error; colmse(): mean squared error, by column; sse(): sum of squared errors; colsse(): sum of squared errors, by column; benford(): Benford distribution; cauchy(): cumulative Cauchy-Lorentz dist.; cauchyden(): Cauchy-Lorentz density; cauchytail(): reverse cumulative Cauchy-Lorentz; invcauchy(): inverse cumulative Cauchy-Lorentz; rbinomial(): generate binomial random numbers; cebinomial(): cond. expect. of binomial r.v.; root(): Brent's univariate zero finder; nrroot(): Newton-Raphson zero finder; finvert(): univariate function inverter; integrate_sr(): univariate function integration (Simpson's rule); integrate_38(): univariate function integration (Simpson's 3/8 rule); ipolate(): linear interpolation; polint(): polynomial inter-/extrapolation; plot(): Draw twoway plot; _plot(): Draw twoway plot; panels(): identify nested panel structure; _panels(): identify panel sizes; npanels(): identify number of panels; nunique(): count number of distinct values; nuniqrows(): count number of unique rows; isconstant(): whether matrix is constant; nobs(): number of observations; colrunsum(): running sum of each column; linbin(): linear binning; fastlinbin(): fast linear binning; exactbin(): exact binning; makegrid(): equally spaced grid points; cut(): categorize data vector; posof(): find element in vector; which(): positions of nonzero elements; locate(): search an ordered vector; hunt(): consecutive search; cond(): matrix conditional operator; expand(): duplicate single rows/columns; _expand(): duplicate rows/columns in place; repeat(): duplicate contents as a whole; _repeat(): duplicate contents in place; unorder2(): stable version of unorder(); jumble2(): stable version of jumble(); _jumble2(): stable version of _jumble(); pieces(): break string into pieces; npieces(): count number of pieces; _npieces(): count number of pieces; invtokens(): reverse of tokens(); realofstr(): convert string into real; strexpand(): expand string argument; matlist(): display a (real) matrix; insheet(): read spreadsheet file; infile(): read free-format file; outsheet(): write spreadsheet file; callf(): pass optional args to function; callf_setup(): setup for mm_callf().