57 resultados para Internalization
Resumo:
In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.
Resumo:
One of the most powerful regulators of cardiovascular function is catecholamine-stimulated adrenergic receptor (AR) signaling. The failing heart is characterized by desensitization and impaired beta-AR responsiveness as a result of upregulated G protein-coupled receptor kinase-2 (GRK2) present in injured myocardium. Deterioration of cardiac function is progressively enhanced by chronic adrenergic over-stimulation due to increased levels of circulating catecholamines. Increased GRK2 activity contributes to this pathological cycle of over-stimulation but lowered responsiveness. Over the past two decades the GRK2 inhibitory peptide betaARKct has been identified as a potential therapy that is able to break this vicious cycle of self-perpetuating deregulation of the beta-AR system and subsequent myocardial malfunction, thus halting development of cardiac failure. The betaARKct has been shown to interfere with GRK2 binding to the betagamma subunits of the heterotrimeric G protein, therefore inhibiting its recruitment to the plasma membrane that normally leads to phosphorylation and internalization of the receptor. In this article we summarize the current data on the therapeutic effects of betaARKct in cardiovascular disease and report on recent and ongoing studies that may pave the way for this peptide towards therapeutic application in heart failure and other states of cardiovascular disease.
Resumo:
Despite 3 decades of focused chemical, biological, structural, and clinical developments, unusual properties of somatostatin (SRIF, 1) analogues are still being uncovered. Here we report the unexpected functional properties of 1 and the octapeptide cyclo(3-14)H-Cys-Phe-Phe-Trp(8)-Lys-Thr-Phe-Cys-OH (somatostatin numbering; OLT-8, 9) substituted by imBzl-l- or -d-His at position 8. These analogues were tested for their binding affinity to the five human somatostatin receptors (sst(1-5)), as well as for their functional properties (or functionalities) in an sst(3) internalization assay and in an sst(3) luciferase reporter gene assay. While substitution of Trp(8) in somatostatin by imBzl-l- or -d-His(8) results in sst(3) selectivity, substitution of Trp(8) in the octapeptide 9 by imBzl-l- or -d-His(8) results in loss of binding affinity for sst(1,2,4,5) and a radical functional switch from agonist to antagonist.
Resumo:
The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.
Resumo:
The synthesis and incorporation into oligodeoxynucleotides of two novel derivatives of bicyclothymidine carrying a cationic diaminopropyl or lysine unit in the C(6′)-β position is described. Compared to unmodified DNA these oligonucleotides show Tm-neutral behavior when paired against complementary DNA and are destabilizing when paired against RNA. Unaided uptake experiments of a decamer containing five lys-bcT units into HeLa and HEK293T cells showed substantial internalization with mostly cytosolic distribution which was not observed in the case of an unmodified control oligonucleotide.
Resumo:
Bombesin receptors are under intense investigation as molecular targets since they are overexpressed in several prevalent solid tumors. We rationally designed and synthesized a series of modified bombesin (BN) peptide analogs to study the influence of charge and spacers at the N-terminus, as well as amino acid substitutions, on both receptor binding affinity and pharmacokinetics. This enabled development of a novel (64/67)Cu-labeled BN peptide for PET imaging and targeted radiotherapy of BN receptor-positive tumors. Our results show that N-terminally positively charged peptide ligands had significantly higher affinity to human gastrin releasing peptide receptor (GRPr) than negatively charged or uncharged ligands (IC(50): 3.2±0.5 vs 26.3±3.5 vs 41.5±2.5 nM). The replacement of Nle(14) by Met, and deletion of D-Tyr(6), further resulted in 8-fold higher affinity. Contrary to significant changes to human GRPr binding, modifications at the N-terminal and at the 6(th), 11(th), and 14(th) position of BN induced only slight influences on affinity to mouse GRPr. [Cu(II)]-CPTA-[βAla(11)] BN(7-14) ([Cu(II)]-BZH7) showed the highest internalization rate into PC-3 cells with relatively slow efflux because of its subnanomolar affinity to GRPr. Interestingly, [(64/67)Cu]-BZH7 also displayed similar affinities to the other 2 human BN receptor subtypes. In vivo studies showed that [(64/67)Cu]-BZH7 had a high accumulation in PC-3 xenografts and allowed for clear-cut visualization of the tumor in PET imaging. In addition, a CPTA-glycine derivative, forming a hippurane-type spacer, enhanced kidney clearance of the radiotracer. These data indicate that the species variation of BN receptor plays an important role in screening radiolabeled BN. As well, the positive charge from the metallated complex at the N-terminal significantly increases affinity to human GRPr. Application of these observations enabled the novel ligand [(64/67)Cu]-BZH7 to clearly visualize PC-3 tumors in vivo. This study provides a strong starting point for optimizing radiopeptides for targeting carcinomas that express any of the BN receptor subtypes.
Resumo:
The synthesis and preclinical evaluation of [(99m)Tc]Demomedin C in GRPR-expressing models are reported. Demomedin C resulted by coupling a Boc-protected N(4)-chelator to neuromedin C (human GRP(18-27)), which, after (99m)Tc-labeling, afforded [(99m)Tc]Demomedin C. Demomedin C showed high affinity and selectivity for the GRPR during receptor autoradiography on human cancer samples (IC(50) in nM: GRPR, 1.4 ± 0.2; NMBR, 106 ± 18; and BB(3)R, >1000). It triggered GRPR internalization in HEK-GRPR cells and Ca(2+) release in PC-3 cells (EC(50) = 1.3 nM). [(99m)Tc]Demomedin C rapidly and specifically internalized at 37 °C in PC-3 cells and was stable in mouse plasma. [(99m)Tc]Demomedin C efficiently and specifically localized in human PC-3 implants in mice (9.84 ± 0.81%ID/g at 1 h pi; 6.36 ± 0.85%ID/g at 4 h pi, and 0.41 ± 0.07%ID/g at 4 h pi block). Thus, human GRP-based radioligands, such as [(99m)Tc]Demomedin C, can successfully target GRPR-expressing human tumors in vivo while displaying attractive biological features--e.g. higher GRPR-selectivity--vs their frog-homologues.
Resumo:
The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression.
Resumo:
The α-hemoglobin-derived dodecapeptide RVD-hemopressin (RVDPVNFKLLSH) has been proposed to be an endogenous agonist for the cannabinoid receptor type 1 (CB(1)). To study this peptide, we have raised mAbs against its C-terminal part. Using an immunoaffinity mass spectrometry approach, a whole family of N-terminally extended peptides in addition to RVD-Hpα were identified in rodent brain extracts and human and mouse plasma. We designated these peptides Pepcan-12 (RVDPVNFKLLSH) to Pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH), referring to peptide length. The most abundant Pepcans found in the brain were tested for CB(1) receptor binding. In the classical radioligand displacement assay, Pepcan-12 was the most efficacious ligand but only partially displaced both [(3)H]CP55,940 and [(3)H]WIN55,212-2. The data were fitted with the allosteric ternary complex model, revealing a cooperativity factor value α < 1, thus indicating a negative allosteric modulation. Dissociation kinetic studies of [(3)H]CP55,940 in the absence and presence of Pepcan-12 confirmed these results by showing increased dissociation rate constants induced by Pepcan-12. A fluorescently labeled Pepcan-12 analog was synthesized to investigate the binding to CB(1) receptors. Competition binding studies revealed K(i) values of several Pepcans in the nanomolar range. Accordingly, using competitive ELISA, we found low nanomolar concentrations of Pepcans in human plasma and ∼100 pmol/g in mouse brain. Surprisingly, Pepcan-12 exhibited potent negative allosteric modulation of the orthosteric agonist-induced cAMP accumulation, [(35)S]GTPγS binding, and CB(1) receptor internalization. Pepcans are the first endogenous allosteric modulators identified for CB(1) receptors. Given their abundance in the brain, Pepcans could play an important physiological role in modulating endocannabinoid signaling.
Resumo:
High levels of glucagon-like peptide-1 (GLP-1) receptor expression in human insulinomas and gastrinomas provide an attractive target for imaging, therapy, and intraoperative tumor localization, using receptor-avid radioligands. The goal of this study was to establish a tumor model for GLP-1 receptor targeting and to use a newly designed exendin-4-DTPA (DTPA is diethylenetriaminepentaacetic acid) conjugate for GLP-1 receptor targeting. METHODS: Exendin-4 was modified C-terminally with Lys(40)-NH(2), whereby the lysine side chain was conjugated with Ahx-DTPA (Ahx is aminohexanoic acid). The GLP-1 receptor affinity (50% inhibitory concentration [IC(50)] value) of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 as well as the GLP-1 receptor density in tumors and different organs of Rip1Tag2 mice were determined. Rip1Tag2 mice are transgenic mice that develop insulinomas in a well-defined multistage tumorigenesis pathway. This animal model was used for biodistribution studies, pinhole SPECT/MRI, and SPECT/CT. Peptide stability, internalization, and efflux studies were performed in cultured beta-tumor cells established from tumors of Rip1Tag2 mice. RESULTS: The GLP-1 receptor affinity of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 was found to be 2.1 +/- 1.1 nmol/L (mean +/- SEM). Because the GLP-1 receptor density in tumors of Rip1Tag2 mice was very high, a remarkably high tumor uptake of 287 +/- 62 %IA/g (% injected activity per gram tissue) was found 4 h after injection. This resulted in excellent tumor visualization by pinhole SPECT/MRI and SPECT/CT. In accordance with in vitro data, [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 uptake in Rip1Tag2 mice was also found in nonneoplastic tissues such as pancreas and lung. However, lung and pancreas uptake was distinctly lower compared with that of tumors, resulting in a tumor-to-pancreas ratio of 13.6 and in a tumor-to-lung ratio of 4.4 at 4 h after injection. Furthermore, in vitro studies in cultured beta-tumor cells demonstrated a specific internalization of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4, whereas peptide stability studies indicated a high metabolic stability of the radiopeptide in beta-tumor cells and human blood serum. CONCLUSION: The high density of GLP-1 receptors in insulinomas as well as the high specific uptake of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 in the tumor of Rip1Tag2 mice indicate that targeting of GLP-1 receptors in insulinomas may become a useful imaging method to localize insulinomas in patients, either preoperatively or intraoperatively. In addition, Rip1Tag2 transgenic mice represent a suitable animal tumor model for GLP-1 receptor targeting.
Resumo:
Targeting neuroendocrine tumors expressing somatostatin receptor subtypes (sst) with radiolabeled somatostatin agonists is an established diagnostic and therapeutic approach in oncology. While agonists readily internalize into tumor cells, permitting accumulation of radioactivity, radiolabeled antagonists do not, and they have not been considered for tumor targeting. The macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to two potent somatostatin receptor-selective peptide antagonists [NH(2)-CO-c(DCys-Phe-Tyr-DAgl(8)(Me,2-naphthoyl)-Lys-Thr-Phe-Cys)-OH (sst(3)-ODN-8) and a sst(2)-selective antagonist (sst(2)-ANT)], for labeling with (111/nat)In. (111/nat)In-DOTA-sst(3)-ODN-8 and (111/nat)In-DOTA-[4-NO(2)-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH(2)] ((111/nat)In-DOTA-sst(2)-ANT) showed high sst(3)- and sst(2)-binding affinity, respectively. They did not trigger sst(3) or sst(2) internalization but prevented agonist-stimulated internalization. (111)In-DOTA-sst(3)-ODN-8 and (111)In-DOTA-sst(2)-ANT were injected intravenously into mice bearing sst(3)- and sst(2)-expressing tumors, and their biodistribution was monitored. In the sst(3)-expressing tumors, strong accumulation of (111)In-DOTA-sst(3)-ODN-8 was observed, peaking at 1 h with 60% injected radioactivity per gram of tissue and remaining at a high level for >72 h. Excess of sst(3)-ODN-8 blocked uptake. As a control, the potent agonist (111)In-DOTA-[1-Nal(3)]-octreotide, with strong sst(3)-binding and internalization properties showed a much lower and shorter-lasting uptake in sst(3)-expressing tumors. Similarly, (111)In-DOTA-sst(2)-ANT was injected into mice bearing sst(2)-expressing tumors. Tumor uptake was considerably higher than with the highly potent sst(2)-selective agonist (111)In-diethylenetriaminepentaacetic acid-[Tyr(3),Thr(8)]-octreotide ((111)In-DTPA-TATE). Scatchard plots showed that antagonists labeled many more sites than agonists. Somatostatin antagonist radiotracers therefore are preferable over agonists for the in vivo targeting of sst(3)- or sst(2)-expressing tumors. Antagonist radioligands for other peptide receptors need to be evaluated in nuclear oncology as a result of this paradigm shift.
Resumo:
The prototypes for tumor targeting with radiolabeled peptides are derivatives of somatostatin. Usually, they primarily have high affinity for somatostatin receptor subtype 2 (sst2), and they have moderate affinity for sst5. We aimed at developing analogs that recognize different somatostatin receptor subtypes for internal radiotherapy in order to extend the present range of accessible tumors. We synthesized DOTA-octapeptides based on octreotide by replacing Phe3 mainly with unnatural amino acids. The affinity profile was determined by using cell lines transfected with sst1-5. Internalization was determined by using AR42J, HEK-sst3, and HEK-sst5 cell lines, and biodistribution was studied in rat tumor models. Two of the derivatives thus obtained showed an improved binding affinity profile, enhanced internalization into cells expressing sst2 and sst3, respectively, and better tumor:kidney ratios in animals.
Resumo:
Gastrin-releasing peptide receptors (GRP-R) are upregulated in many cancers, including prostate, breast, and lung. We describe a new radiolabeled bombesin (BBN) analog for imaging and systemic radiotherapy that has improved pharmacokinetics (PK) and better retention of radioactivity in the tumor. METHODS: DO3A-CH2CO-G-4-aminobenzoyl-Q-W-A-V-G-H-L-M-NH2 (AMBA) was synthesized and radiolabeled. The human prostate cancer cell line PC-3 was used to determine the binding (Kd), retention, and efflux of 177Lu-AMBA. Receptor specificity was determined by in vitro autoradiography in human tissues. PK and radiotherapy studies were performed in PC-3 tumor-bearing male nude mice. RESULTS: 177Lu-AMBA has a high affinity for the GRP-R (Kd, 1.02 nmol/L), with a maximum binding capacity (Bmax) of 414 fmol/10(6) cells (2.5 x 10(5) GRP-R/cell). Internalization was similar for 177Lu-AMBA (76.8%), 177Lu-BBN8 (72.9%), and 125I-[Tyr4]-BBN (74.9%). Efflux was markedly lower for 177Lu-AMBA (2.9%) compared with 177Lu-BBN8 (15.9%) and 125I-[Tyr4]-BBN (46.1%). By receptor autoradiography, Lu-AMBA binds specifically to GRP-R (0.8 nmol/L) and to the neuromedin B receptor (NMB-R) (0.9 nmol/L), with no affinity for the bb3 receptor (>1,000 nmol/L). 177Lu-AMBA was renally excreted (55 %ID 1 h [percentage injected dose at 1 h]); tumor uptake at 1 and 24 h was 6.35 %ID/g and 3.39 %ID/g, respectively. One or 2 doses of 177Lu-AMBA (27.75 MBq/dose) significantly prolonged the life span of PC-3 tumor-bearing mice (P < 0.001 and P < 0.0001, respectively) and decreased PC-3 tumor growth rate over controls. When compared using World Health Organization criteria, mice receiving 2 doses versus 1 dose of 177Lu-AMBA demonstrated a shift away from stable/progressive disease toward complete/partial response; by RECIST (Response Evaluation Criteria in Solid Tumors), median survival increased by 36% and time to progression/progression-free survival increased by 65%. CONCLUSION: 177Lu-AMBA binds with nanomolar affinity to GRP-R and NMB-R, has low retention of radioactivity in kidney, demonstrates a very favorable risk-benefit profile, and is in phase I clinical trials.
Resumo:
PURPOSE: Malignant glial brain tumors consistently overexpress neurokinin type 1 receptors. In classic seed-based brachytherapy, one to several rigid (125)I seeds are inserted, mainly for the treatment of small low-grade gliomas. The complex geometry of rapidly proliferating high-grade gliomas requires a diffusible system targeting tumor-associated surface structures to saturate the tumor, including its margins. EXPERIMENTAL DESIGN: We developed a new targeting vector by conjugating the chelator 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid to Arg(1) of substance P, generating a radiopharmaceutical with a molecular weight of 1,806 Da and an IC(50) of 0.88 +/- 0.34 nmol/L. Cell biological studies were done with glioblastoma cell lines. neurokinin type-1 receptor (NK1R) autoradiography was done with 58 tumor biopsies. For labeling, (90)Y was mostly used. To reduce the "cross-fire effect" in critically located tumors, (177)Lut and (213)Bi were used instead. In a pilot study, we assessed feasibility, biodistribution, and early and long-term toxicity following i.t. injection of radiolabeled 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid substance P in 14 glioblastoma and six glioma patients of WHO grades 2 to 3. RESULTS: Autoradiography disclosed overexpression of NK1R in 55 of 58 gliomas of WHO grades 2 to 4. Internalization of the peptidic vector was found to be specific. Clinically, the radiopharmeutical was distributed according to tumor geometry. Only transient toxicity was seen as symptomatic radiogenic edema in one patient (observation period, 7-66 months). Disease stabilization and/or improved neurologic status was observed in 13 of 20 patients. Secondary resection disclosed widespread radiation necrosis with improved demarcation. CONCLUSIONS: Targeted radiotherapy using diffusible peptidic vectors represents an innovative strategy for local control of malignant gliomas, which will be further assessed as a neoadjuvant approach.
Resumo:
Radiolabeled somatostatin analogues have been successfully used for targeted radiotherapy and for imaging of somatostatin receptor (sst1-5)-positive tumors. Nevertheless, these analogues are subject to improving their tumor-to-nontarget ratio to enhance their diagnostic or therapeutic properties, preventing nephrotoxicity. In order to understand the influence of lipophilicity and charge on the pharmacokinetic profile of [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)]-somatostatin-based radioligands such as [DOTA,1-Nal3]-octreotide (DOTA-NOC), different spacers (X) based on 8-amino-3,6-dioxaoctanoic acid (PEG2), 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG4), N-acetyl glucosamine (GlcNAc), triglycine, beta-alanine, aspartic acid, and lysine were introduced between the chelator DOTA and the peptide NOC. All DOTA-X-NOC conjugates were synthesized by Fmoc solid-phase synthesis. The partition coefficient (log D) at pH = 7.4 indicated that higher hydrophilicity than [111In-DOTA]-NOC was achieved with the introduction of the mentioned spacers, except with triglycine and beta-alanine. The high affinity of [InIII-DOTA]-NOC for human sst2 (hsst2) was preserved with the structural modifications, while an overall drop for hsst3 affinity was observed, except in the case of [InIII-DOTA]-beta-Ala-NOC. The new conjugates preserved the good affinity for hsst5, except for [InIII-DOTA]-Asn(GlcNAc)-NOC, which showed decreased affinity. A significant 1.2-fold improvement in the specific internalization rate in AR4-2J rat pancreatic tumor cells (sst2 receptor expression) at 4 h was achieved with the introduction of Asp as a spacer in the parent compound. In sst3-expressing HEK cells, the specific internalization rate at 4 h for [111In-DOTA]-NOC (13.1% +/- 0.3%) was maintained with [111In-DOTA]-beta-Ala-NOC (14.0% +/- 1.8%), but the remaining derivatives showed <2% specific internalization. Biodistribution studies were performed with Lewis rats bearing the AR4-2J rat pancreatic tumor. In comparison to [111In-DOTA]-NOC (2.96% +/- 0.48% IA/g), the specific uptake in the tumor at 4 h p.i. was significantly improved for the 111In-labeled sugar analogue (4.17% +/- 0.46% IA/g), which among all the new derivatives presented the best tumor-to-kidney ratio (1.9).