24 resultados para Innervation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Urinary incontinence or the inability to void spontaneously after ileal orthotopic bladder substitution is a frequent finding in female patients. OBJECTIVE To evaluate how hysterectomy and nerve sparing affect functional outcomes and whether these relate to pre- and postoperative urethral pressure profile (UPP) results. DESIGN, SETTING, AND PARTICIPANTS Prospectively performed pre- and postoperative UPPs of 73 female patients who had undergone cystectomy and bladder substitution were correlated with postoperative voiding and continence status. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Outcome analyses were performed with the Kruskal-Wallis test, Wilcoxon-Mann-Whitney, or two-group post hoc testing with the Bonferroni correction. Chi-square or Fisher exact tests were applied for the categorical data. RESULTS AND LIMITATIONS Of postoperatively continent or hypercontinent patients, 22 of 43 (51.2%) had the uterus preserved; of incontinent patients, only 4 of 30 (13.3%, p<0.01) had the uterus preserved. Of postoperatively continent or hypercontinent patients, 27 of 43 patients (62.8%) had bilateral and 15 of 43 (34.9%) had unilateral attempted nerve sparing. In incontinent patients, 11 of 30 (36.7%) had bilateral and 16 of 30 (53.3%) had unilateral attempted nerve sparing (p=0.02). When compared with postoperatively incontinent patients, postoperatively continent patients had a longer functional urethral length (median: 32mm vs 24mm; p<0.001), a higher postoperative urethral closing pressure at rest (56cm H2O vs 35cm H2O; p<0.001) as well as a higher preoperative urethral closing pressure at rest (74cm H2O vs 47.5cm H2O; p=0.01). The main limitation was the limited number of patients. CONCLUSIONS In female patients undergoing radical cystectomy and bladder substitution, preservation of the uterus and attempted nerve sparing results in better functional outcomes. The preoperative UPPs correlate with postoperative voiding and continence status and may predict which patients are at a higher risk of functional failure after bladder substitution. PATIENT SUMMARY If preservation of the urethra's innervation is not possible during cystectomy, poor functional results with bladder substitutes are likely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present topical review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human non-verbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be both voluntarily or emotionally controlled. Recent studies in non-human primates and humans revealed that the motor control of facial expressions has a distributed neural representation. At least 5 cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and, finally, the rostral and caudal cingulate cortex. The results of studies in humans and non-human primates suggest that the innervation of the face is bilaterally controlled for the upper part, and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, since they receive input from different structures of the limbic system. This article is protected by copyright. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Delayed-onset muscle soreness (DOMS) is a common symptom in people participating in exercise, sport, or recreational physical activities. Several remedies have been proposed to prevent and alleviate DOMS. DESIGN AND METHODS A five-arm randomized controlled study was conducted to examine the effects of acupuncture on eccentric exercise-induced DOMS of the biceps brachii muscle. Participants were recruited through convenience sampling of students and general public. Participants were randomly allocated to needle, laser, sham needle, sham laser acupuncture, and no intervention. Outcome measures included pressure pain threshold (PPT), pain intensity (visual analog scale), and maximum isometric voluntary force. RESULTS Delayed-onset muscle soreness was induced in 60 participants (22 females, age 23.6 ± 2.8 years, weight 66.1 ± 9.6 kg, and height 171.6 ± 7.9 cm). Neither verum nor sham interventions significantly improved outcomes within 72 hours when compared with no treatment control (P > 0.05). CONCLUSIONS Acupuncture was not effective in the treatment of DOMS. From a mechanistic point of view, these results have implications for further studies: (1) considering the high-threshold mechanosensitive nociceptors of the muscle, the cutoff for PPT (5 kg/cm) chosen to avoid bruising might have led to ceiling effects; (2) the traditional acupuncture regimen, targeting muscle pain, might have been inappropriate as the DOMS mechanisms seem limited to the muscular unit and its innervation. Therefore, a regionally based regimen including an intensified intramuscular needling (dry needling) should be tested in future studies, using a higher cutoff for PPT to avoid ceiling effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM The autonomic innervation of the heart consists of sympathetic and parasympathetic nerve fibres, and fibres of the intrinsic ganglionated plexus with noradrenaline and acytylcholine as principal neurotransmitters. The fibres co-release neuropeptides to modulate intracardiac neurotransmission by specific presynaptic and postsynaptic receptors. The coexpression of angiotensin II in sympathetic fibres of the human heart and its role are not known so far. METHODS Autopsy specimens of human hearts were studied (n=3; ventricles). Using immunocytological methods, cryostat sections were stained by a murine monoclonal antibody (4B3) directed against angiotensin II and co-stained by polyclonal antibodies against tyrosine hydroxylase, a catecholaminergic marker. Visualisation of the antibodies was by confocal light microscopy or laser scanning microscopy. RESULTS Angiotensin II-positive autonomic fibres with and without a catecholaminergic cophenotype (hydroxylase-positive) were found in all parts of the human ventricles. In the epicardium, the fibres were grouped in larger bundles of up to 100 and more fibres. They followed the preformed anatomic septa and epicardial vessels towards the myocardium and endocardium where the bundles dissolved and the individual fibres spread between myocytes and within the endocardium. Generally, angiotensinergic fibres showed no synaptic enlargements or only a few if they were also catecholaminergic. The exclusively catechalominergic fibres were characterised by multiple beaded synapses. CONCLUSION The autonomic innervation of the human heart contains angiotensinergic fibres with a sympathetic efferent phenotype and exclusively angiotensinergic fibers representing probably afferents. Angiotensinergic neurotransmission may modulate intracardiac sympathetic and parasympathetic activity and thereby influence cardiac and circulatory function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Axillary hyperhidrosis is a common and distressing problem interfering with the life of affected individuals. Currently, local surgery is the treatment of choice once conservative treatment has failed. OBJECTIVES To evaluate the clinical efficacy and safety of tumescent suction curettage (TSC) in treating axillary hyperhidrosis and to correlate it with histological markers. METHODS Thirty patients (17 females and 13 males, average age 29.9 years) underwent TSC. After tumescent anaesthesia, a suction cannula was inserted in the axilla on each side through two tiny incisions and subcutaneous tissue was removed by suction. We evaluated the clinical efficacy and complications, and in a subset of patients performed biopsies before surgery, as well as 1 month and 1 year after the operation. RESULTS In comparison with preoperative values, the sweat rate was diminished by 85% after 1 month, 71% after 6 months, 77% after 12 months and 61% after 24 months. The reduced efficacy with time was histologically correlated with an increase in the innervation, whereas the number of sweat glands continued to diminish. The majority of patients were satisfied with the operation but the satisfaction diminished with time. Patients with the highest preoperative sweat rates were the most satisfied after the intervention. CONCLUSION TSC is an effective and safe treatment for axillary hyperhidrosis. The long-term recurrence may be due to reinnervation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nail unit is the largest and a rather complex skin appendage. It is located on the dorsal aspect of the tips of fingers and toes and has important protective and sensory functions. Development begins in utero between weeks 7 and 8 and is fully formed at birth. For its correct development, a great number of signals are necessary. Anatomically, it consists of 4 epithelial components: the matrix that forms the nail plate; the nail bed that firmly attaches the plate to the distal phalanx; the hyponychium that forms a natural barrier at the physiological point of separation of the nail from the bed; and the eponychium that represents the undersurface of the proximal nail fold which is responsible for the formation of the cuticle. The connective tissue components of the matrix and nail bed dermis are located between the corresponding epithelia and the bone of the distal phalanx. Characteristics of the connective tissue include: a morphogenetic potency for the regeneration of their epithelia; the lateral and proximal nail folds form a distally open frame for the growing nail; and the tip of the digit has rich sensible and sensory innervation. The blood supply is provided by the paired volar and dorsal digital arteries. Veins and lymphatic vessels are less well defined. The microscopic anatomy varies from nail subregion to subregion. Several different biopsy techniques are available for the histopathological evaluation of nail alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.