34 resultados para Heart-assist devices
Resumo:
Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow.
Resumo:
Herzunterstützungssysteme werden bei Patienten mit terminalem Herzversagen und im kardiogenen Schock verwendet. Therapieziele sind die Überbrückung bis zur Transplantation bzw. zur Organerholung. Berichtet wird über den Todesfall eines 69 Jahre alt gewordenen Mannes, dem 2 Jahre vor Todeseintritt ein Linksherzunterstützungssystem implantiert worden war. Mit diesem Herzunterstützungssystem konnte er über einen Zeitraum von 2 Jahren zufriedenstellend leben. Er starb an einem auch laborchemisch gesicherten akuten Myokardinfarkt bei Funktionsfähigkeit des Unterstützungssystems und der Schrittmachereinheit.
Resumo:
OBJECTIVES Left ventricular assist devices are an important treatment option for patients with heart failure alter the hemodynamics in the heart and great vessels. Because in vivo magnetic resonance studies of patients with ventricular assist devices are not possible, in vitro models represent an important tool to investigate flow alterations caused by these systems. By using an in vitro magnetic resonance-compatible model that mimics physiologic conditions as close as possible, this work investigated the flow characteristics using 4-dimensional flow-sensitive magnetic resonance imaging of a left ventricular assist device with outflow via the right subclavian artery as commonly used in cardiothoracic surgery in the recent past. METHODS An in vitro model was developed consisting of an aorta with its supra-aortic branches connected to a left ventricular assist device simulating the pulsatile flow of the native failing heart. A second left ventricular assist device supplied the aorta with continuous flow via the right subclavian artery. Four-dimensional flow-sensitive magnetic resonance imaging was performed for different flow rates of the left ventricular assist device simulating the native heart and the left ventricular assist device providing the continuous flow. Flow characteristics were qualitatively and quantitatively evaluated in the entire vessel system. RESULTS Flow characteristics inside the aorta and its upper branching vessels revealed that the right subclavian artery and the right carotid artery were solely supported by the continuous-flow left ventricular assist device for all flow rates. The flow rates in the brain-supplying arteries are only marginally affected by different operating conditions. The qualitative analysis revealed only minor effects on the flow characteristics, such as weakly pronounced vortex flow caused by the retrograde flow via the brachiocephalic artery. CONCLUSIONS The results indicate that, despite the massive alterations in natural hemodynamics due to the retrograde flow via the right subclavian and brachiocephalic arteries, there are no drastic consequences on the flow in the brain-feeding arteries and the flow characteristics in the ascending and descending aortas. It may be beneficial to adjust the operating condition of the left ventricular assist device to the residual function of the failing heart.
Resumo:
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.
Resumo:
Ventricular assist devices (VADs) and total artificial hearts have been in development for the last 50 years. Since their inception, simulators of the circulation with different degrees of complexity have been produced to test these devices in vitro. Currently, a new path has been taken with the extensive efforts to develop paediatric VADs, which require totally different design constraints. This paper presents the manufacturing details of an economical simulator of the systemic paediatric circulation. This simulator allows the insertion of a paediatric VAD, includes a pumping ventricle, and is adjustable within the paediatric range. Rather than focusing on complexity and physiological simulation, this simulator is designed to be simple and practical for rapid device testing. The simulator was instrumented with medical sensors and data were acquired under different conditions with and without the new PediaFlowTM paediatric VAD. The VAD was run at different impeller speeds while simulator settings such as vascular resistance and stroke volume were varied. The hydraulic performance of the VAD under pulsatile conditions could be characterized and the magnetic suspension could be tested via manipulations such as cannula clamping. This compact mock loop has proven to be valuable throughout the PediaFlow development process and has the advantage that it is uncomplicated and can be manufactured cheaply. It can be produced by several research groups and the results of different VADs can then be compared easily.
Resumo:
AIM: We sought to investigate the prevalence of posttraumatic stress disorder, anxiety, and depression in patients and their partners after implantation of a mechanical assist device as a bridge to heart transplantation. METHODS: This was a retrospective assessment of 41 patients (age 46.3 +/- 12.0 years; male-female ratio, 38:3; time since transplantation, 55.3 +/- 34.2 months [range, 7-122 months) and 27 partners (male-female ratio 2:25) by standardized instruments (Impact of Event Scale, Hospital Anxiety and Depression Scale), in 2 University Heart Transplant Centers (Vienna, Austria, Munster, Germany). The duration of the support systems (MicroMed DeBakey-VAD in 17 patients, Novacor in 10, Thoratec in 8, TCI HeartMate in 5, and Berlin Heart Incor in 1 patient) ranged from 28 to 711 (176 +/- 146) days. RESULTS: None of the patients, but 23% of the partners (n = 6), met the criteria for posttraumatic stress disorder (Maercker cutoff >0). The Impact of Event Scale (IES) sum scales differed significantly between the 2 groups (21.2 +/- 15.1, mean +/- SD) for the patients versus 38.1 +/- 27.8 for the partners, respectively; P = .001). Two percent of the patients, but 19% of the partners, showed mild to moderate depression; 4% of patients, but 23% of their partners, reported mild to moderate anxiety. None of the results were significantly influenced by the time since transplantation, patient age, diagnoses, type of assist device, or indication for heart transplantation. CONCLUSIONS: Despite patients being much closer to a life threat, their partners experience significantly more psychologic distress even in the long run. Our findings highlight the need for attention to the supporting persons.
Resumo:
Introduction Assist in unison to the patient’s inspiratory neural effort and feedback-controlled limitation of lung distension with neurally adjusted ventilatory assist (NAVA) may reduce the negative effects of mechanical ventilation on right ventricular function. Methods Heart–lung interaction was evaluated in 10 intubated patients with impaired cardiac function using esophageal balloons, pulmonary artery catheters and echocardiography. Adequate NAVA level identified by a titration procedure to breathing pattern (NAVAal), 50% NAVAal, and 200% NAVAal and adequate pressure support (PSVal, defined clinically), 50% PSVal, and 150% PSVal were implemented at constant positive end-expiratory pressure for 20 minutes each. Results NAVAal was 3.1 ± 1.1cmH2O/μV and PSVal was 17 ± 2 cmH20. For all NAVA levels negative esophageal pressure deflections were observed during inspiration whereas this pattern was reversed during PSVal and PSVhigh. As compared to expiration, inspiratory right ventricular outflow tract velocity time integral (surrogating stroke volume) was 103 ± 4%, 109 ± 5%, and 100 ± 4% for NAVAlow, NAVAal, and NAVAhigh and 101 ± 3%, 89 ± 6%, and 83 ± 9% for PSVlow, PSVal, and PSVhigh, respectively (p < 0.001 level-mode interaction, ANOVA). Right ventricular systolic isovolumetric pressure increased from 11.0 ± 4.6 mmHg at PSVlow to 14.0 ± 4.6 mmHg at PSVhigh but remained unchanged (11.5 ± 4.7 mmHg (NAVAlow) and 10.8 ± 4.2 mmHg (NAVAhigh), level-mode interaction p = 0.005). Both indicate progressive right ventricular outflow impedance with increasing pressure support ventilation (PSV), but no change with increasing NAVA level. Conclusions Right ventricular performance is less impaired during NAVA compared to PSV as used in this study. Proposed mechanisms are preservation of cyclic intrathoracic pressure changes characteristic of spontaneous breathing and limitation of right-ventricular outflow impedance during inspiration, regardless of the NAVA level.
Resumo:
Background Transcatheter aortic valve implantation (TAVI) is a treatment option for high-risk patients with severe aortic stenosis. Previous reports focused on a single device or access site, whereas little is known of the combined use of different devices and access sites as selected by the heart team. The purpose of this study is to investigate clinical outcomes of TAVI using different devices and access sites. Methods A consecutive cohort of 200 patients underwent TAVI with the Medtronic CoreValve Revalving system (Medtronic Core Valve LLC, Irvine, CA; n = 130) or the Edwards SAPIEN valve (Edwards Lifesciences LLC, Irvine, CA; n = 70) implanted by either the transfemoral or transapical access route. Results Device success and procedure success were 99% and 95%, respectively, without differences between devices and access site. All-cause mortality was 7.5% at 30 days, with no differences between valve types or access sites. Using multivariable analysis, low body mass index (<20 kg/m2) (odds ratio [OR] 6.6, 95% CI 1.5-29.5) and previous stroke (OR 4.4, 95% CI 1.2-16.8) were independent risk factors for short-term mortality. The VARC-defined combined safety end point occurred in 18% of patients and was driven by major access site complications (8.0%), life-threatening bleeding (8.5%) or severe renal failure (4.5%). Transapical access emerged as independent predictor of adverse outcome for the Valve Academic Research Consortium–combined safety end point (OR 3.3, 95% CI 1.5-7.1). Conclusion A heart team–based selection of devices and access site among patients undergoing TAVI resulted in high device and procedural success. Low body mass index and history of previous stroke were independent predictors of mortality. Transapical access emerged as a risk factor for the Valve Academic Research Consortium–combined safety end point.
Resumo:
Energy-harvesting devices attract wide interest as power supplies of today's medical implants. Their long lifetime will spare patients from repeated surgical interventions. They also offer the opportunity to further miniaturize existing implants such as pacemakers, defibrillators or recorders of bio signals. A mass imbalance oscillation generator, which consists of a clockwork from a commercially available automatic wrist watch, was used as energy harvesting device to convert the kinetic energy from the cardiac wall motion to electrical energy. An MRI-based motion analysis of the left ventricle revealed basal regions to be energetically most favorable for the rotating unbalance of our harvester. A mathematical model was developed as a tool for optimizing the device's configuration. The model was validated by an in vitro experiment where an arm robot accelerated the harvesting device by reproducing the cardiac motion. Furthermore, in an in vivo experiment, the device was affixed onto a sheep heart for 1 h. The generated power in both experiments-in vitro (30 μW) and in vivo (16.7 μW)-is sufficient to power modern pacemakers.
Resumo:
Implantation of a ventricular assist device (VAD) reduces short-term mortality and morbidity and provides patients with reasonable quality of life even though it may also be a long-lasting emotional burden. This study was conducted to analyze the long-time emotional consequences of VAD implantation, followed by heart transplantation in patients and spouses.
Resumo:
BACKGROUND Acute cardiogenic shock after myocardial infarction is associated with high in-hospital mortality attributable to persisting low-cardiac output. The Impella-EUROSHOCK-registry evaluates the safety and efficacy of the Impella-2.5-percutaneous left-ventricular assist device in patients with cardiogenic shock after acute myocardial infarction. METHODS AND RESULTS This multicenter registry retrospectively included 120 patients (63.6±12.2 years; 81.7% male) with cardiogenic shock from acute myocardial infarction receiving temporary circulatory support with the Impella-2.5-percutaneous left-ventricular assist device. The primary end point evaluated mortality at 30 days. The secondary end point analyzed the change of plasma lactate after the institution of hemodynamic support, and the rate of early major adverse cardiac and cerebrovascular events as well as long-term survival. Thirty-day mortality was 64.2% in the study population. After Impella-2.5-percutaneous left-ventricular assist device implantation, lactate levels decreased from 5.8±5.0 mmol/L to 4.7±5.4 mmol/L (P=0.28) and 2.5±2.6 mmol/L (P=0.023) at 24 and 48 hours, respectively. Early major adverse cardiac and cerebrovascular events were reported in 18 (15%) patients. Major bleeding at the vascular access site, hemolysis, and pericardial tamponade occurred in 34 (28.6%), 9 (7.5%), and 2 (1.7%) patients, respectively. The parameters of age >65 and lactate level >3.8 mmol/L at admission were identified as predictors of 30-day mortality. After 317±526 days of follow-up, survival was 28.3%. CONCLUSIONS In patients with acute cardiogenic shock from acute myocardial infarction, Impella 2.5-treatment is feasible and results in a reduction of lactate levels, suggesting improved organ perfusion. However, 30-day mortality remains high in these patients. This likely reflects the last-resort character of Impella-2.5-application in selected patients with a poor hemodynamic profile and a greater imminent risk of death. Carefully conducted randomized controlled trials are necessary to evaluate the efficacy of Impella-2.5-support in this high-risk patient group.
Resumo:
The efficacy of everolimus with reduced cyclosporine in de novo heart transplant patients has been demonstrated convincingly in randomized studies. Moreover, everolimus-based immunosuppression in de novo heart transplant recipients has been shown in two randomized trials to reduce the increase in maximal intimal thickness based on intravascular ultrasound, indicating attenuation of cardiac allograft vasculopathy (CAV). Randomized trials of everolimus in de novo heart transplantation have also consistently shown reduced cytomegalovirus infection versus antimetabolite therapy. In maintenance heart transplantation, conversion from calcineurin inhibitors to everolimus has demonstrated a sustained improvement in renal function. In de novo patients, a renal benefit may only be achieved if there is an adequate reduction in exposure to calcineurin inhibitor therapy. Delayed introduction of everolimus may be appropriate in patients at high risk of wound healing complications, e.g. diabetic patients or patients with ventricular assist device. The current evidence base suggests that the most convincing reasons for use of everolimus from the time of heart transplantation are to slow the progression of CAV and to lower the risk of cytomegalovirus infection. A regimen of everolimus with reduced-exposure calcineurin inhibitor and steroids in de novo heart transplant patients represents a welcome addition to the therapeutic armamentarium.