20 resultados para Glass ionomer cements – Analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes the most common genetic cause of renal failure in the first three decades of life. Using positional cloning, six genes (NPHP1-6) have been identified as mutated in NPHP. In Joubert syndrome (JBTS), NPHP may be associated with cerebellar vermis aplasia/hypoplasia, retinal degeneration and mental retardation. In Senior-Løken syndrome (SLSN), NPHP is associated with retinal degeneration. Recently, mutations in NPHP6/CEP290 were identified as a new cause of JBTS. METHODS: Mutational analysis was performed on a worldwide cohort of 75 families with SLSN, 99 families with JBTS and 21 families with isolated nephronophthisis. RESULTS: Six novel and six known truncating mutations, one known missense mutation and one novel 3 bp pair in-frame deletion were identified in a total of seven families with JBTS, two families with SLSN and one family with isolated NPHP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of glass is of importance in materials science but its nature has not yet been fully understood. Here we report that a verification of the temperature dependencies of the primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming systems can be carried out via the analysis of the inverse of the Dyre-Olsen temperature index. The subsequent analysis of experimental data indicates the possibility of the self-consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crystals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the prevalence of equations associated with the 'finite temperature divergence'. All these lead to a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to the dominated local symmetry for a given glass former is identified here. Results obtained show a new relationship between the glass transition and critical phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2010 more than 600 radiocarbon samples were measured with the gas ion source at the MIni CArbon DAting System (MICADAS) at ETH Zurich and the number of measurements is rising quickly. While most samples contain less than 50 mu g C at present, the gas ion source is attractive as well for larger samples because the time-consuming graphitization is omitted. Additionally, modern samples are now measured down to 5 per-mill counting statistics in less than 30 min with the recently improved gas ion source. In the versatile gas handling system, a stepping-motor-driven syringe presses a mixture of helium and sample CO2 into the gas ion source, allowing continuous and stable measurements of different kinds of samples. CO2 can be provided in four different ways to the versatile gas interface. As a primary method. CO2 is delivered in glass or quartz ampoules. In this case, the CO2 is released in an automated ampoule cracker with 8 positions for individual samples. Secondly, OX-1 and blank gas in helium can be provided to the syringe by directly connecting gas bottles to the gas interface at the stage of the cracker. Thirdly, solid samples can be combusted in an elemental analyzer or in a thermo-optical OC/EC aerosol analyzer where the produced CO2 is transferred to the syringe via a zeolite trap for gas concentration. As a fourth method, CO2 is released from carbonates with phosphoric acid in septum-sealed vials and loaded onto the same trap used for the elemental analyzer. All four methods allow complete automation of the measurement, even though minor user input is presently still required. Details on the setup, versatility and applications of the gas handling system are given. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to analyze the removal of implant-supported crowns retained by three different cements using an air-accelerated crown remover and to evaluate the patients' response to the procedure. MATERIALS AND METHODS This controlled clinical trial was conducted with 21 patients (10 women, 11 men; mean age: 51 ± 10.2 years) who had received a total of 74 implants (all placed in the posterior zone of the mandible). Four months after implant surgery, the crowns were cemented on standard titanium abutments of different heights. Three different cements (two temporary: Harvard TEMP and Improv; and one definitive: Durelon) were used and randomly assigned to the patients. Eight months later, one blinded investigator removed all crowns. The number of activations of the instrument (CORONAflex, KaVo) required for crown removal was recorded. The patients completed a questionnaire retrospectively to determine the impact of the procedure and to gauge their subjective perception. A linear regression model and descriptive statistics were used for data analysis. RESULTS All crowns could be retrieved without any technical complications or damage. Both abutment height (P = .019) and cement type (P = .004) had a significant effect on the number of activations, but the type of cement was more important. An increased total number of activations had no or only a weak correlation to the patients' perception of concussion, noise, pain, and unwillingness to use the device. CONCLUSIONS Cemented implant crowns can be removed, and the application of an air-accelerated device is a practicable method. A type of cement with appropriate retention force has to be selected. The impact on the patients' subjective perception should be taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called trace gas extractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, µmole mole−1) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on repeated measurements of compressed air during a 2-week intercomparison campaign, the repeatability of the TREXQCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREXQCLAS data and bag/flask samplingIRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. This also displays the potential to improve the interlaboratory compatibility based on the analysis of a reference air sample with accurately determined isotopic composition.