31 resultados para Fiber-Optic Ring-Down Spectroscopy
Resumo:
Objective Impaired function of the central gamma-aminobutyric acid (GABA) system, which provides the brain’s major inhibitory pathways, is thought to play an important role in the pathophysiology of anxiety disorders. The effect of acute psychological stress on the human GABA-ergic system is still unknown, however. The purpose of this study was to determine the effect of acute stress on prefrontal GABA levels. Method A recently developed noninvasive magnetic resonance spectroscopy method was used to measure changes in the GABA concentration of the prefrontal cortex in 10 healthy human subjects during a threat-of-shock condition and during a safe condition (two sessions on different days). The main outcome measure was the mean GABA concentration within a 3×3×2-cm3 voxel selected from the medial prefrontal cortex. Results Prefrontal GABA decreased by approximately 18% in the threat-of-shock condition relative to the safe condition. This reduction was specific to GABA, since the concentrations of N-acetyl-aspartate, choline-containing compounds, and glutamate/glutamine levels obtained in the same spectra did not change significantly. Conclusions This result appeared compatible with evidence from preclinical studies in rodents, which showed rapid presynaptic down-regulation of GABA-ergic neurotransmission in response to acute psychological stress. The molecular mechanism and functional significance of this reduced inhibitory effect of acute psychological stress in relation to impaired GABA-ergic function in anxiety disorders merit further investigation.
Resumo:
Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue. Intracellular calcium levels might play a role in both adaptive phenomena, yet a role for PGC-1α in the adaptation of calcium handling in skeletal muscle remains unknown. Using mice with transgenic overexpression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium-releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α overexpression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction. During prolonged muscle activity, the delayed calcium clearance might facilitate force production in mice overexpressing PGC-1α. Our results reveal a novel role of PGC-1α in altering the contractile properties of skeletal muscle by modulating calcium handling. Importantly, our findings indicate PGC-1α to be both down- as well as upstream of calcium signaling in this tissue. Overall, our findings suggest that in the adaptation to chronic exercise, PGC-1α reduces maximal force, increases resistance to fatigue, and drives fiber type switching partly through remodeling of calcium transients, in addition to promoting slow-type myofibrillar protein expression and adequate energy supply.
Resumo:
A high resolution luminescence study of NaLaF4: 1%Pr3+, 5%Yb3+ and NaLaF4: 1%Ce3+, 5%Yb3+ in the UV to NIR spectral range using a InGaAs detector and a fourier transform interferometer is reported. Although the Pr3+(P-3(0) -> (1)G(4), Yb3+(F-2(7/2) -> F-2(5/2)) energy transfer step takes place, significant Pr3+ (1)G(4) emission around 993, 1330 and 1850 nm is observed. No experimental proof for the second energy transfer step in the down-conversion process between Pr3+ and Yb3+ can be given. In the case of NaLaF4: Ce3+, Yb3+ it is concluded that the observed Yb3+ emission upon Ce3+ 5d excitation is the result of a charge transfer process instead of down-conversion. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Glomerular mesangial cells can produce high amounts of nitric oxide (NO) and reactive oxygen species (ROS). Here we analyzed the impact of NO on the ROS-generating system, particularly on the NADPH oxidase Nox1. Nox1 mRNA and protein levels were markedly decreased by treatment of mesangial cells with the NO-releasing compound DETA-NO in a concentration- and time-dependent fashion. By altering the cGMP signaling system with different inhibitors or activators, we revealed that the effect of NO on Nox1 expression is at least in part mediated by cGMP. Analysis of a reporter construct comprising the 2547 bp of the nox1 promoter region revealed that a stimulatory effect of IL-1beta on nox1 transcription is counteracted by an inhibitory effect of IL-1beta-evoked endogenous NO formation. Moreover, pretreatment of mesangial cells with DETA-NO attenuated platelet-derived growth factor (PDGF)-BB or serum stimulated production of superoxide as assessed by real-time EPR spectroscopy and dichlorofluorescein formation. Transfection of mesangial cells with siRNAs directed against Nox1 and Nox4 revealed that inhibition of Nox1, but not Nox4 expression, is responsible for the reduced ROS formation by NO. Obviously, there exists a fine-tuned crosstalk between NO and ROS generating systems in the course of inflammatory diseases.
Resumo:
For improving the identification of potential heparin impurities such as oversulfated chondroitin sulfate (OSCS) the standard 2D (1)H-(1)H NMR NOESY was applied. Taking advantage of spin diffusion and adjusting the experimental parameters accordingly additional contaminant-specific signals of the corresponding sugar ring protons can easily be detected. These are usually hidden by the more intense heparin signals. Compared to the current 1D (1)H procedure proposed for screening commercial unfractionated heparin samples and focusing on the contaminants acetyl signals more informative and unique fingerprints may be obtained. Correspondingly measured (1)H fingerprints of a few potential impurities are given and their identification in two contaminated commercial heparin samples is demonstrated. The proposed 2D NOESY method is not intended to replace the current 1D method for detecting and quantifying heparin impurities but may be regarded as a valuable supplement for an improved and more reliable identification of these contaminants.
Resumo:
Two novel bicyclo nucleoside isomers carrying the base thymine in the furanose ring and an ester substituent in the carbocyclic ring were synthesized from a common bicyclic sugar precursor via a cyclopropanation/fragmentation pathway in nine steps. The relative configuration of the ester substituent in both isomers as well as the anomeric configuration in one nucleoside was determined by 1H-NMR difference NOE spectroscopy.
Resumo:
PURPOSE To study the apparent diffusivity and its directionality for metabolites of skeletal muscle in humans in vivo by (1) H magnetic resonance spectroscopy. METHODS The diffusion tensors were determined on a 3 Tesla MR system using optimized acquisition and processing methods including an adapted STEAM sequence with orientation-dependent diffusion weighting, pulse-triggering with individually adapted delays, eddy-current correction schemes, median filtering, and simultaneous prior-knowledge fitting of all related spectra. RESULTS The average apparent diffusivities, as well as the fractional anisotropies of taurine (ADCav = 0.74 × 10(-3) s/mm(2) , FA = 0.46), creatine (ADCav = 0.41 × 10(-3) s/mm(2) , FA = 0.33), trimethylammonium compounds (ADCav = 0.48 × 10(-3) s/mm(2) , FA = 0.34), carnosine (ADCav = 0.46 × 10(-3) s/mm(2) , FA = 0.47), and water (ADCav = 1.5 × 10(-3) s/mm(2) , FA = 0.36) were estimated. The diffusivities of most metabolites and water were significantly different from each other. Diffusion was found to be anisotropic and the diffusion tensors showed tensor correlation coefficients close to 1 and were hence found to be essentially coaligned. The magnitudes of apparent metabolite diffusivities were largely ordered according to molecular weight, with taurine as the smallest molecule diffusing fastest, both along and across the fiber direction. CONCLUSION Diffusivities, directional dependence of diffusion and fractional anisotropies of (1) H MRS-visible muscle metabolites were presented. It was shown that metabolites share diffusion directionality with water and have similar fractional anisotropies, hinting at similar diffusion barriers. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
PURPOSE To investigate retrograde axonal degeneration for its potential to cause microcystic macular edema (MME), a maculopathy that has been previously described in patients with demyelinating disease. To identify risk factors for MME and to expand the anatomic knowledge on MME. DESIGN Retrospective case series. PARTICIPANTS We included 117 consecutive patients and 180 eyes with confirmed optic neuropathy of variable etiology. Patients with glaucoma were excluded. METHODS We determined age, sex, visual acuity, etiology of optic neuropathy, and the temporal and spatial characteristics of MME. Eyes with MME were compared with eyes with optic neuropathy alone and to healthy fellow eyes. With retinal layer segmentation we quantitatively measured the intraretinal anatomy. MAIN OUTCOME MEASURES Demographic data, distribution of MME in the retina, and thickness of retinal layers were analyzed. RESULTS We found MME in 16 eyes (8.8%) from 9 patients, none of whom had multiple sclerosis or neuromyelitis optica. The MME was restricted to the inner nuclear layer (INL) and had a characteristic perifoveal circular distribution. Compared with healthy controls, MME was associated with significant thinning of the ganglion cell layer and nerve fiber layer, as well as a thickening of the INL and the deeper retinal layers. Youth is a significant risk factor for MME. CONCLUSIONS Microcystic macular edema is not specific for demyelinating disease. It is a sign of optic neuropathy irrespective of its etiology. The distinctive intraretinal anatomy suggests that MME is caused by retrograde degeneration of the inner retinal layers, resulting in impaired fluid resorption in the macula.
Resumo:
We present three methods for the distortion-free enhancement of THz signals measured by electro-optic sampling in zinc blende-type detector crystals, e.g., ZnTe or GaP. A technique commonly used in optically heterodyne-detected optical Kerr effect spectroscopy is introduced, which is based on two measurements at opposite optical biases near the zero transmission point in a crossed polarizer detection geometry. In contrast to other techniques for an undistorted THz signal enhancement, it also works in a balanced detection scheme and does not require an elaborate procedure for the reconstruction of the true signal as the two measured waveforms are simply subtracted to remove distortions. We study three different approaches for setting an optical bias using the Jones matrix formalism and discuss them also in the framework of optical heterodyne detection. We show that there is an optimal bias point in realistic situations where a small fraction of the probe light is scattered by optical components. The experimental demonstration will be given in the second part of this two-paper series [J. Opt. Soc. Am. B, doc. ID 204877 (2014, posted online)].
Resumo:
BACKGROUND It has been suggested that sleep apnea syndrome may play a role in normal-tension glaucoma contributing to optic nerve damage. The purpose of this study was to evaluate if optic nerve and visual field parameters in individuals with sleep apnea syndrome differ from those in controls. PATIENTS AND METHODS From the records of the sleep laboratory at the University Hospital in Bern, Switzerland, we recruited consecutive patients with severe sleep apnea syndrome proven by polysomnography, apnea-hypopnea index >20, as well as no sleep apnea controls with apnea-hypopnea index <10. Participants had to be unknown to the ophtalmology department and had to have no recent eye examination in the medical history. All participants underwent a comprehensive eye examination, scanning laser polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, California), scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II, HRT II), and automated perimetry (Octopus 101 Programm G2, Haag-Streit Diagnostics, Koeniz, Switzerland). Mean values of the parameters of the two groups were compared by t-test. RESULTS The sleep apnea group consisted of 69 eyes of 35 patients; age 52.7 ± 9.7 years, apnea-hypopnea index 46.1 ± 24.8. As controls served 38 eyes of 19 patients; age 45.8 ± 11.2 years, apnea-hypopnea index 4.8 ± 1.9. A difference was found in mean intraocular pressure, although in a fully overlapping range, sleep apnea group: 15.2 ± 3.1, range 8-22 mmHg, controls: 13.6 ± 2.3, range 9-18 mmHg; p<0.01. None of the extended visual field, optic nerve head (HRT) and retinal nerve fiber layer (GDx VCC) parameters showed a significant difference between the groups. CONCLUSION Visual field, optic nerve head, and retinal nerve fiber layer parameters in patients with sleep apnea did not differ from those in the control group. Our results do not support a pathogenic relationship between sleep apnea syndrome and glaucoma.
Resumo:
Impaired eye movements have a long history in schizophrenia research and meet the criteria of a reliable biomarker. However, the effects of cognitive load and task difficulty on saccadic latencies (SL) are less understood. Recent studies showed that SL are strongly task dependent: SL are decreased in tasks with higher cognitive demand, and increased in tasks with lower cognitive demand. The present study investigates SL modulation in patients with schizophrenia and their first-degree relatives. A group of 13 patients suffering from ICD-10 schizophrenia, 10 first-degree relatives, and 24 control subjects performed two different types of visual tasks: a color task and a Landolt ring orientation task. We used video-based oculography to measure SL. We found that patients exhibited a similar unspecific SL pattern in the two different tasks, whereas controls and relatives exhibited 20–26% shorter average latencies in the orientation task (higher cognitive demand) compared to the color task (lower cognitive demand). Also, classification performance using support vector machines suggests that relatives should be assigned to the healthy controls and not to the patient group. Therefore, visual processing of different content does not modulate SL in patients with schizophrenia, but modulates SL in the relatives and healthy controls. The results reflect a specific oculomotor attentional dysfunction in patients with schizophrenia that is a potential state marker, possibly caused by impaired top-down disinhibition of the superior colliculus by frontal/prefrontal areas such as the frontal eye fields.
Resumo:
PURPOSE To gain a deeper understanding of the influence of skeletal muscle fiber orientation on metabolite visibility, magnetization transfer from water, and water proton relaxation rates in (1) H MR spectra. METHODS Non-water-suppressed MR spectroscopy was performed in tibialis anterior muscle (TA) of 10 healthy adults, with the TA oriented either parallel or at the magic angle to the 3T field. Spectra were acquired with metabolite-cycled PRESS, and water inversion from 50 to 2510 ms before excitation. Water proton T2 relaxation was sampled with STEAM with echo times from 12 to 272 ms. RESULTS Apparent concentrations of total creatine (tCr), taurine, and trimethylammonium compounds were reduced by 29% to 67% when TA was parallel to B0 . Both tCr peak areas were strongly correlated to the methylene peak splitting. Magnetization transfer rates from water to tCr CH3 were not significantly different between orientations. Water T1 s were similar between orientations, but T2 s were statistically significantly shorter by 1 ms in the parallel orientation (P = 0.002). CONCLUSION Muscle metabolite visibilities in MR spectroscopy and water T2 times depend substantially on muscle fiber orientation relative to B0 . In contrast, magnetization transfer rates appear to depend on muscle composition, rather than fiber orientation. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
As the number of space debris is increasing in the geostationary ring, it becomes mandatory for any satellite operator to avoid any collisions. Space debris in geosynchronous orbits may be observed with optical telescopes. Other than radar, that requires very large dishes and transmission powers for sensing high-altitude objects, optical observations do not depend on active illumination from ground and may be performed with notably smaller apertures. The detection size of an object depends on the aperture of the telescope, sky background and exposure time. With a telescope of 50 cm aperture, objects down to approximately 50 cm may be observed. This size is regarded as a threshold for the identification of hazardous objects and the prevention of potentially catastrophic collisions in geostationary orbits. In collaboration with the Astronomical Institute of the University of Bern (AIUB), the German Space Operations Center (GSOC) is building a small aperture telescope to demonstrate the feasibility of optical surveillance of the geostationary ring. The telescope will be located in the southern hemisphere and complement an existing telescope in the northern hemisphere already operated by AIUB. These two telescopes provide an optimum coverage of European GEO satellites and enable a continuous monitoring independent of seasonal limitations. The telescope will be operated completely automatically. The automated operations should be demonstrated covering the full range of activities including scheduling of observations, telescope and camera control as well as data processing.
Resumo:
Femtosecond time-resolved Raman rotational coherence spectroscopy (RCS) is employed to determine accurate rotational, vibration–rotation coupling constants, and centrifugal distortion constants of cyclopentane (C⁵H¹⁰). Its lowest-frequency vibration is a pseudorotating ring deformation that interconverts 10 permutationally distinct but energetically degenerate “twist” minima interspersed by 10 “bent” conformers. While the individual twist and bent structures are polar asymmetric tops, the pseudorotation is fast on the time scale of external rotation, rendering cyclopentane a fluxionally nonpolar symmetric top molecule. The pseudorotational level pattern corresponds to a one-dimensional internal rotor with a pseudorotation constant Bps ≈ 2.8 cm⁻¹. The pseudorotational levels are significantly populated up to l = ± 13 at 298 K; <10% of the molecules are in the l = 0 level. The next-higher vibration is the “radial” ν²³ ring deformation mode at 273 cm⁻¹, which is far above the pseudorotational fundamental. Femtosecond Raman RCS measurements were performed in a gas cell at T = 293 K and in a pulsed supersonic jet at T ≈ 90 K. The jet cooling reduces the pseudorotational distribution to l < ±8 and eliminates the population of ν²³, allowing one to determine the rotational constant as A0 = B0 = 6484.930(11) MHz. This value is ∼300 times more precise than the previous value. The fit of the RCS transients reveals that the rotation–pseudorotation coupling constant αe,psB = −0.00070(1) MHz is diminutive, implying that excitation of the pseudorotation has virtually no effect on the B0 rotational constant of cyclopentane. The smallness of αe,psB can be realized when comparing to the vibration–rotation coupling constant of the ν²³ vibration, αe,23B = −9.547(1) MHz, which is about 10⁴ times larger.