33 resultados para Electrospray


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ThioTEPA, an alkylating agent with anti-tumor activity, has been used as an effective anticancer drug since the 1950s. However, a complete understanding of how its alkylating activity relates to clinical efficacy has not been achieved, the total urinary excretion of thioTEPA and its metabolites is not resolved, and the mechanism of formation of the potentially toxic metabolites S-carboxymethylcysteine (SCMC) and thiodiglycolic acid (TDGA) remains unclear. In this study, the metabolism of thioTEPA in a mouse model was comprehensively investigated using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) based-metabolomics. The nine metabolites identified in mouse urine suggest that thioTEPA underwent ring-opening, N-dechloroethylation, and conjugation reactions in vivo. SCMC and TDGA, two downstream thioTEPA metabolites, were produced from thioTEPA from two novel metabolites 1,2,3-trichloroTEPA (VII) and dechloroethyltrichloroTEPA (VIII). SCMC and TDGA excretion were increased about 4-fold and 2-fold, respectively, in urine following the thioTEPA treatment. The main mouse metabolites of thioTEPA in vivo were TEPA (II), monochloroTEPA (III) and thioTEPA-mercapturate (IV). In addition, five thioTEPA metabolites were detected in serum and all shared similar disposition. Although thioTEPA has a unique chemical structure which is not maintained in the majority of its metabolites, metabolomic analysis of its biotransformation greatly contributed to the investigation of thioTEPA metabolism in vivo, and provides useful information to understand comprehensively the pharmacological activity and potential toxicity of thioTEPA in the clinic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass spectrometry-based serum metabolic profiling is a promising tool to analyse complex cancer associated metabolic alterations, which may broaden our pathophysiological understanding of the disease and may function as a source of new cancer-associated biomarkers. Highly standardized serum samples of patients suffering from colon cancer (n = 59) and controls (n = 58) were collected at the University Hospital Leipzig. We based our investigations on amino acid screening profiles using electrospray tandem-mass spectrometry. Metabolic profiles were evaluated using the Analyst 1.4.2 software. General, comparative and equivalence statistics were performed by R 2.12.2. 11 out of 26 serum amino acid concentrations were significantly different between colorectal cancer patients and healthy controls. We found a model including CEA, glycine, and tyrosine as best discriminating and superior to CEA alone with an AUROC of 0.878 (95% CI 0.815-0.941). Our serum metabolic profiling in colon cancer revealed multiple significant disease-associated alterations in the amino acid profile with promising diagnostic power. Further large-scale studies are necessary to elucidate the potential of our model also to discriminate between cancer and potential differential diagnoses. In conclusion, serum glycine and tyrosine in combination with CEA are superior to CEA for the discrimination between colorectal cancer patients and controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CZE coupled to sheath liquid-based electrospray ionization (ESI) and multiple-stage ion trap mass spectrometry (MS(n) ) was used for the confirmation analysis of ethyl glucuronide (EtG) and ethyl sulfate (EtS) in human serum and urine collected after intake of alcoholic beverages. Electrophoretic separations were performed in uncoated fused-silica capillaries using a pH 9.5 ammonium acetate background electrolyte and normal polarity. MS detection of EtG and EtS occurred after negative ionization using a spray liquid containing 0.5% v/v ammonia in isopropanol/water (60:40%, v/v). CZE-MS and CZE-MS² results obtained after injection of solid-phase extracts for EtG and EtS and of diluted urine confirmed the presence of EtG and EtS in samples whose levels were previously determined by CZE with indirect UV detection. Detection limits of each compound were estimated to be around 2.0 (injection of diluted urine) and 0.2 μg/mL (extracts).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass spectrometry-based metabolomics has previously demonstrated utility for identifying biomarkers of ionizing radiation exposure in cellular, mouse and rat in vivo radiation models. To provide a valuable link from small laboratory rodents to humans, γ-radiation-induced urinary biomarkers were investigated using a nonhuman primate total-body-irradiation model. Mass spectrometry-based metabolomics approaches were applied to determine whether biomarkers could be identified, as well as the previously discovered rodent biomarkers of γ radiation. Ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry analysis was carried out on a time course of clean-catch urine samples collected from nonhuman primates (n = 6 per cohort) exposed to sham, 1.0, 3.5, 6.5 or 8.5 Gy doses of (60)Co γ ray (∼0.55 Gy/min) ionizing radiation. By multivariate data analysis, 13 biomarkers of radiation were discovered: N-acetyltaurine, isethionic acid, taurine, xanthine, hypoxanthine, uric acid, creatine, creatinine, tyrosol sulfate, 3-hydroxytyrosol sulfate, tyramine sulfate, N-acetylserotonin sulfate, and adipic acid. N-Acetyltaurine, isethionic acid, and taurine had previously been identified in rats, and taurine and xanthine in mice after ionizing radiation exposure. Mass spectrometry-based metabolomics has thus successfully revealed and verified urinary biomarkers of ionizing radiation exposure in the nonhuman primate for the first time, which indicates possible mechanisms for ionizing radiation injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Procainamide, a type I antiarrhythmic agent, is used to treat a variety of atrial and ventricular dysrhythmias. It was reported that long-term therapy with procainamide may cause lupus erythematosus in 25-30% of patients. Interestingly, procainamide does not induce lupus erythematosus in mouse models. To explore the differences in this side-effect of procainamide between humans and mouse models, metabolomic analysis using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) was conducted on urine samples from procainamide-treated humans, CYP2D6-humanized mice, and wild-type mice. Thirteen urinary procainamide metabolites, including nine novel metabolites, derived from P450-dependent, FMO-dependent oxidations and acylation reactions, were identified and structurally elucidated. In vivo metabolism of procainamide in CYP2D6-humanized mice as well as in vitro incubations with microsomes and recombinant P450s suggested that human CYP2D6 plays a major role in procainamide metabolism. Significant differences in N-acylation and N-oxidation of the drug between humans and mice largely account for the interspecies differences in procainamide metabolism. Significant levels of the novel N-oxide metabolites produced by FMO1 and FMO3 in humans might be associated with the development of procainamide-induced systemic lupus erythematosus. Observations based on this metabolomic study offer clues to understanding procainamide-induced lupus in humans and the effect of P450s and FMOs on procainamide N-oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global transcriptomic and proteomic profiling platforms have yielded important insights into the complex response to ionizing radiation (IR). Nonetheless, little is known about the ways in which small cellular metabolite concentrations change in response to IR. Here, a metabolomics approach using ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry was used to profile, over time, the hydrophilic metabolome of TK6 cells exposed to IR doses ranging from 0.5 to 8.0 Gy. Multivariate data analysis of the positive ions revealed dose- and time-dependent clustering of the irradiated cells and identified certain constituents of the water-soluble metabolome as being significantly depleted as early as 1 h after IR. Tandem mass spectrometry was used to confirm metabolite identity. Many of the depleted metabolites are associated with oxidative stress and DNA repair pathways. Included are reduced glutathione, adenosine monophosphate, nicotinamide adenine dinucleotide, and spermine. Similar measurements were performed with a transformed fibroblast cell line, BJ, and it was found that a subset of the identified TK6 metabolites were effective in IR dose discrimination. The GEDI (Gene Expression Dynamics Inspector) algorithm, which is based on self-organizing maps, was used to visualize dynamic global changes in the TK6 metabolome that resulted from IR. It revealed dose-dependent clustering of ions sharing the same trends in concentration change across radiation doses. "Radiation metabolomics," the application of metabolomic analysis to the field of radiobiology, promises to increase our understanding of cellular responses to stressors such as radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One gram of onion added to the food of rats inhibits significantly (p < 0.05) bone resorption as assessed by the urinary excretion of tritium released from bone of 9-week-old rats prelabeled with tritiated tetracycline from weeks 1 to 6. To isolate and identify the bone resorption inhibiting compound from onion, onion powder was extracted and the extract fractionated by column chromatography and medium-pressure liquid chromatography. A single active peak was finally obtained by semipreparative high-performance liquid chromatography. The biological activity of the various fractions was tested in vitro on the activity of osteoclasts to form resorption pits on a mineralized substrate. Medium, containing the various fractions or the pure compound, was added to osteoclasts of new-born rats settled on ivory slices. After 24 h of incubation, the tartrate-resistant acid phosphatase positive multinucleated cells, that is, osteoclasts, were counted. Subsequently, the number of resorption pits was determined. Activity was calculated as the ratio of resorption pits/osteoclasts and was compared to a negative control, that is, medium containing 10% fetal bovine serum only and to calcitonin (10(-12) M) as a positive control. Finally, a single peak inhibited osteoclast activity significantly (p < 0.05). The structure of this compound was elucidated with high-performance liquid chromatography-electrospray ionization-mass spectrometry, time-of-flight electrospray ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. The single peak was identified as gamma-L-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide (GPCS). It has a molecular mass of 306 Da and inhibits dose-dependently the resorption activity of osteoclasts, the minimal effective dose being approximately 2 mM. As no other peak displayed inhibitory activity, it likely is responsible for the effect of onion on bone resorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the large variability in the pharmacokinetics of anti-HIV drugs, therapeutic drug monitoring in patients may contribute to optimize the overall efficacy and safety of antiretroviral therapy. An LC–MS/MS method for the simultaneous assay in plasma of the novel antiretroviral agents rilpivirine (RPV) and elvitegravir (EVG) has been developed to that endeavor. Plasma samples (100 μL) extraction is performed by protein precipitation with acetonitrile, and the supernatant is subsequently diluted 1:1 with 20-mM ammonium acetate/MeOH 50:50. After reverse-phase chromatography, quantification of RPV and EVG, using matrix-matched calibration samples, is performed by electrospray ionization–triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The stable isotopic-labeled compounds RPV-13C6 and EVG-D6 were used as internal standards. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<6.4%), as well as EVG and RPV short and long-term stability in plasma. Calibration curves were validated over the clinically relevant concentrations ranging from 5 to 2500 ng/ml for RPV and from 50 to 5000 ng/ml for EVG. The method is precise (inter-day CV%: 3–6.3%) and accurate (3.8–7.2%). Plasma samples were found to be stable (<15%) in all considered conditions (RT/48 h, +4°C/48 h, −20°C/3 months and 60°C/1 h). Selected metabolite profiles analysis in patients' samples revealed the presence of EVG glucuronide, that was well separated from parent EVG, allowing to exclude potential interferences through the in-source dissociation of glucuronide to parent drug. This new, rapid and robust LCMS/MS assay for the simultaneous quantification of plasma concentrations of these two major new anti-HIV drugs EVG and RPV offers an efficient analytical tool for clinical pharmacokinetics studies and routine therapeutic drug monitoring service.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichloroethylene (TCE)-induced liver toxicity and carcinogenesis is believed to be mediated in part by activation of the peroxisome proliferator-activated receptor α (PPARα). However, the contribution of the two TCE metabolites, dichloroacetate (DCA) and trichloroacetate (TCA) to the toxicity of TCE, remains unclear. The aim of the present study was to determine the metabolite profiles in serum and urine upon exposure of mice to TCE, to aid in determining the metabolic response to TCE exposure and the contribution of DCA and TCA to TCE toxicity. C57BL/6 mice were administered TCE, TCA, or DCA, and urine and serum subjected to ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based global metabolomics analysis. The ions were identified through searching metabolomics databases and by comparison with authentic standards, and quantitated using multiple reactions monitoring. Quantitative polymerase chain reaction of mRNA, biochemical analysis, and liver histology were also performed. TCE exposure resulted in a decrease in urine of metabolites involved in fatty acid metabolism, resulting from altered expression of PPARα target genes. TCE treatment also induced altered phospholipid homeostasis in serum, as revealed by increased serum lysophosphatidylcholine 18:0 and 18:1, and phosphatidylcholine metabolites. TCA administration revealed similar metabolite profiles in urine and serum upon TCE exposure, which correlated with a more robust induction of PPARα target gene expression associated with TCA than DCA treatment. These data show the metabolic response to TCE exposure and demonstrate that TCA is the major contributor to TCE-induced metabolite alterations observed in urine and serum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1–60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9 ± 5.6 % for G and 82.7 ± 7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085–16.3 ng/mL for G and 0.126–3.6 ng/mL for MG. Concentrations of G and MG in snow were 1–2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In continuation of the long tradition of mass spectrometric research at the University of Bern, our group focuses on the characterization of nucleic acids as therapeutic agents and as drug targets. This article provides a short overview of our recent work on platinated single-stranded and higher-order nucleic acids. Nearly three decades ago the development of soft ionization techniques opened a whole new chapter in the mass spectrometric analysis of not only nucleic acids themselves, but also their interactions with potential drug candidates. In contrast to modern next generation sequencing approaches, though, the goal of the tandem mass spectrometric investigation of nucleic acids is by no means the complete sequencing of genetic DNA, but rather the characterization of short therapeutic and regulatory oligonucleotides and the elucidation of nucleic acid–drug interactions. The influence of cisplatin binding on the gas-phase dissociation of nucleic acids was studied by the means of electrospray ionization tandem mass spectrometry. Experiments on native and modified DNA and RNA oligomers confirmed guanine base pairs as the preferred platination site and laid the basis for the formulation of a gas-phase fragmentation mechanism of platinated oligonucleotides. The study was extended to double stranded DNA and DNA quadruplexes. While duplexes are believed to be the main target of cisplatin in vivo, the recently discovered DNA quadruplexes constitute another promising target for anti-tumor drugs owing to their regulatory functions in the cell cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prognosis of pancreatic neuroendocrine tumors is related to size, histology and proliferation rate. However, this stratification needs to be refined further. We conducted a proteome study on insulinomas, a well-defined pancreatic neuroendocrine tumor entity, in order to identify proteins that can be used as biomarkers for malignancy. Based on a long follow-up, insulinomas were divided into those with metastases (malignant) and those without (benign). Microdissected cells from six benign and six malignant insulinomas were subjected to a procedure combining fluorescence dye saturation labeling with high-resolution two-dimensional gel electrophoresis. Differentially expressed proteins were identified using nano liquid chromatography-electrospray ionization/multi-stage mass spectrometry and validated by immunohistochemistry on tissue microarrays containing 62 insulinomas. Sixteen differentially regulated proteins were identified among 3000 protein spots. Immunohistochemical validation revealed that aldehyde dehydrogenase 1A1 and voltage-dependent anion-selective channel protein 1 showed significantly stronger expression in malignant insulinomas than in benign insulinomas, whereas tumor protein D52 (TPD52) binding protein was expressed less strongly in malignant insulinomas than in benign insulinomas. Using multivariate analysis, low TPD52 expression was identified as a strong independent prognostic factor for both recurrence-free and overall disease-related survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Praziquantel (PZQ), prescribed as a racemic mixture, is the most readily available drug to treat schistosomiasis. In the present study, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) based metabolomics was employed to decipher the metabolic pathways and enantioselective metabolic differences of PZQ. Many phase I and four new phase II metabolites were found in urine and feces samples of mice 24h after dosing, indicating that the major metabolic reactions encompassed oxidation, dehydrogenation, and glucuronidation. Differences in the formation of all these metabolites were observed between (R)-PZQ and (S)-PZQ. In an in vitro phase I incubation system, the major involvement of CYP3A, CYP2C9, and CYP2C19 in the metabolism of PZQ, and CYP3A, CYP2C9, and CYP2C19 exhibited different catalytic activity toward the PZQ enantiomers. Apparent Km and Vmax differences were observed in the catalytic formation of three mono-oxidized metabolites by CYP2C9 and CYP3A4 further supporting the metabolic differences for PZQ enantiomers. Molecular docking showed that chirality resulted in differences in substrate location and conformation, which likely accounts for the metabolic differences. In conclusion, in silico, in vitro, and in vivo methods revealed the enantioselective metabolic profile of praziquantel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE Contamination with bacteria and/or fungi is a serious complication in organ-cultured corneas. Hence, antibiotic and antifungal agents are added to the culture medium. The concentration of different antimicrobial and antifungal additives to the media over time has so far not been investigated in detail and is the aim of this study. METHODS Nine human fresh corneoscleral discs were stored in corneal culture medium consisting of 2% fetal bovine serum and minimal essential medium. In addition, the culture medium contained 1200 μg/mL penicillin G, 25 μg/mL amphotericin B, 120 μg/mL streptomycin, and 100 μg/mL voriconazole. The concentration of amphotericin B used was 10 times higher than in clinical routine to facilitate its detection. The cultures were kept at 37°C for 28 days. At days 0, 7, 14, 21, and 28, samples of the culture medium were harvested for analysis of antimicrobial concentrations by liquid chromatography and electrospray ionization tandem mass spectrometry. RESULTS During corneal storage, the concentration of all antibiotics and antifungal agents declined significantly. By day 28, penicillin G was reduced to 14% of the original concentration. Amphotericin B and streptomycin retained approximately 60% of the original concentration to the end of the experiment and voriconazole maintained stable concentrations after an initial decline to approximately 80% at 7 days. CONCLUSIONS Throughout the entire storage period, the concentrations of penicillin G, streptomycin, and voriconazole exceeded the minimum inhibitory concentrations of all common contaminants, obviating the need for a change of the medium for antimicrobial reasons. Based on the minimum inhibitory concentrations and our findings, the initial concentration of amphotericin B should be raised to 5 μg/mL.