72 resultados para Domain-specific programming languages
Resumo:
Object-oriented meta-languages such as MOF or EMOF are often used to specify domain specific languages. However, these meta-languages lack the ability to describe behavior or operational semantics. Several approaches used a subset of Java mixed with OCL as executable meta-languages. In this paper, we report our experience of using Smalltalk as an executable and integrated meta-language. We validated this approach in incrementally building over the last decade, Moose, a meta-described reengineering environment. The reflective capabilities of Smalltalk support a uniform way of letting the base developer focus on his tasks while at the same time allowing him to meta-describe his domain model. The advantage of our this approach is that the developer uses the same tools and environment
Resumo:
As domain-specific modeling begins to attract widespread acceptance, pressure is increasing for the development of new domain-specific languages. Unfortunately these DSLs typically conflict with the grammar of the host language, making it difficult to compose hybrid code except at the level of strings; few mechanisms (if any) exist to control the scope of usage of multiple DSLs; and, most seriously, existing host language tools are typically unaware of the DSL extensions, thus hampering the development process. Language boxes address these issues by offering a simple, modular mechanism to encapsulate (i) compositional changes to the host language, (ii) transformations to address various concerns such as compilation and highlighting, and (iii) scoping rules to control visibility of language extensions. We describe the design and implementation of language boxes, and show with the help of several examples how modular extensions can be introduced to a host language and environment.
Resumo:
Object-oriented modelling languages such as EMOF are often used to specify domain specific meta-models. However, these modelling languages lack the ability to describe behavior or operational semantics. Several approaches have used a subset of Java mixed with OCL as executable meta-languages. In this experience report we show how we use Smalltalk as an executable meta-language in the context of the Moose reengineering environment. We present how we implemented EMOF and its behavioral aspects. Over the last decade we validated this approach through incrementally building a meta-described reengineering environment. Such an approach bridges the gap between a code-oriented view and a meta-model driven one. It avoids the creation of yet another language and reuses the infrastructure and run-time of the underlying implementation language. It offers an uniform way of letting developers focus on their tasks while at the same time allowing them to meta-describe their domain model. The advantage of our approach is that developers use the same tools and environment they use for their regular tasks. Still the approach is not Smalltalk specific but can be applied to language offering an introspective API such as Ruby, Python, CLOS, Java and C#.
Resumo:
Context-dependent behavior is becoming increasingly important for a wide range of application domains, from pervasive computing to common business applications. Unfortunately, mainstream programming languages do not provide mechanisms that enable software entities to adapt their behavior dynamically to the current execution context. This leads developers to adopt convoluted designs to achieve the necessary runtime flexibility. We propose a new programming technique called Context-oriented Programming (COP) which addresses this problem. COP treats context explicitly, and provides mechanisms to dynamically adapt behavior in reaction to changes in context, even after system deployment at runtime. In this paper we lay the foundations of COP, show how dynamic layer activation enables multi-dimensional dispatch, illustrate the application of COP by examples in several language extensions, and demonstrate that COP is largely independent of other commitments to programming style.
Resumo:
The domain of context-free languages has been extensively explored and there exist numerous techniques for parsing (all or a subset of) context-free languages. Unfortunately, some programming languages are not context-free. Using standard context-free parsing techniques to parse a context-sensitive programming language poses a considerable challenge. Im- plementors of programming language parsers have adopted various techniques, such as hand-written parsers, special lex- ers, or post-processing of an ambiguous parser output to deal with that challenge. In this paper we suggest a simple extension of a top-down parser with contextual information. Contrary to the tradi- tional approach that uses only the input stream as an input to a parsing function, we use a parsing context that provides ac- cess to a stream and possibly to other context-sensitive infor- mation. At a same time we keep the context-free formalism so a grammar definition stays simple without mind-blowing context-sensitive rules. We show that our approach can be used for various purposes such as indent-sensitive parsing, a high-precision island parsing or XML (with arbitrary el- ement names) parsing. We demonstrate our solution with PetitParser, a parsing-expression grammar based, top-down, parser combinator framework written in Smalltalk.
Resumo:
Object inspectors are an essential category of tools that allow developers to comprehend the run-time of object-oriented systems. Traditional object inspectors favor a generic view that focuses on the low-level details of the state of single objects. Based on 16 interviews with software developers and a follow-up survey with 62 respondents we identified a need for object inspectors that support different high-level ways to visualize and explore objects, depending on both the object and the current developer need. We propose the Moldable Inspector, a novel inspector model that enables developers to adapt the inspection workflow to suit their immediate needs by making the inspection context explicit, providing multiple interchangeable domain-specific views for each object, and supporting a workflow that groups together multiple levels of connected objects. We show that the Moldable Inspector can address multiple kinds of development needs involving a wide range of objects.
Resumo:
Java Enterprise Applications (JEAs) are large systems that integrate multiple technologies and programming languages. Transactions in JEAs simplify the development of code that deals with failure recovery and multi-user coordination by guaranteeing atomicity of sets of operations. The heterogeneous nature of JEAs, however, can obfuscate conceptual errors in the application code, and in particular can hide incorrect declarations of transaction scope. In this paper we present a technique to expose and analyze the application transaction scope in JEAs by merging and analyzing information from multiple sources. We also present several novel visualizations that aid in the analysis of transaction scope by highlighting anomalies in the specification of transactions and violations of architectural constraints. We have validated our approach on two versions of a large commercial case study.
Resumo:
Java Enterprise Applications (JEAs) are large systems that integrate multiple technologies and programming languages. With the purpose to support the analysis of JEAs we have developed MooseJEE an extension of the \emphMoose environment capable to model the typical elements of JEAs.
Resumo:
Background The dose–response relation between physical activity and all-cause mortality is not well defined at present. We conducted a systematic review and meta-analysis to determine the association with all-cause mortality of different domains of physical activity and of defined increases in physical activity and energy expenditure. Methods MEDLINE, Embase and the Cochrane Library were searched up to September 2010 for cohort studies examining all-cause mortality across different domains and levels of physical activity in adult general populations. We estimated combined risk ratios (RRs) associated with defined increments and recommended levels, using random-effects meta-analysis and dose–response meta-regression models. Results Data from 80 studies with 1 338 143 participants (118 121 deaths) were included. Combined RRs comparing highest with lowest activity levels were 0.65 [95% confidence interval (95% CI) 0.60–0.71] for total activity, 0.74 (95% CI 0.70–0.77) for leisure activity, 0.64 (95% CI 0.55–0.75) for activities of daily living and 0.83 (95% CI 0.71–0.97) for occupational activity. RRs per 1-h increment per week were 0.91 (95% CI 0.87–0.94) for vigorous exercise and 0.96 (95% CI 0.93–0.98) for moderate-intensity activities of daily living. RRs corresponding to 150 and 300 min/week of moderate to vigorous activity were 0.86 (95% CI 0.80–0.92) and 0.74 (95% CI 0.65–0.85), respectively. Mortality reductions were more pronounced in women. Conclusion Higher levels of total and domain-specific physical activity were associated with reduced all-cause mortality. Risk reduction per unit of time increase was largest for vigorous exercise. Moderate-intensity activities of daily living were to a lesser extent beneficial in reducing mortality.
Resumo:
After decades of development in programming languages and programming environments, Smalltalk is still one of few environments that provide advanced features and is still widely used in the industry. However, as Java became prevalent, the ability to call Java code from Smalltalk and vice versa becomes important. Traditional approaches to integrate the Java and Smalltalk languages are through low-level communication between separate Java and Smalltalk virtual machines. We are not aware of any attempt to execute and integrate the Java language directly in the Smalltalk environment. A direct integration allows for very tight and almost seamless integration of the languages and their objects within a single environment. Yet integration and language interoperability impose challenging issues related to method naming conventions, method overloading, exception handling and thread-locking mechanisms. In this paper we describe ways to overcome these challenges and to integrate Java into the Smalltalk environment. Using techniques described in this paper, the programmer can call Java code from Smalltalk using standard Smalltalk idioms while the semantics of each language remains preserved. We present STX:LIBJAVA - an implementation of Java virtual machine within Smalltalk/X - as a validation of our approach
Resumo:
The demands of developing modern, highly dynamic applications have led to an increasing interest in dynamic programming languages and mechanisms. Not only applications must evolve over time, but the object models themselves may need to be adapted to the requirements of different run-time contexts. Class-based models and prototype-based models, for example, may need to co-exist to meet the demands of dynamically evolving applications. Multi-dimensional dispatch, fine-grained and dynamic software composition, and run-time evolution of behaviour are further examples of diverse mechanisms which may need to co-exist in a dynamically evolving run-time environment How can we model the semantics of these highly dynamic features, yet still offer some reasonable safety guarantees? To this end we present an original calculus in which objects can adapt their behaviour at run-time to changing contexts. Both objects and environments are represented by first-class mappings between variables and values. Message sends are dynamically resolved to method calls. Variables may be dynamically bound, making it possible to model a variety of dynamic mechanisms within the same calculus. Despite the highly dynamic nature of the calculus, safety properties are assured by a type assignment system.
Resumo:
The demands of developing modern, highly dynamic applications have led to an increasing interest in dynamic programming languages and mechanisms. Not only must applications evolve over time, but the object models themselves may need to be adapted to the requirements of different run-time contexts. Class-based models and prototype-based models, for example, may need to co-exist to meet the demands of dynamically evolving applications. Multi-dimensional dispatch, fine-grained and dynamic software composition, and run-time evolution of behaviour are further examples of diverse mechanisms which may need to co-exist in a dynamically evolving run-time environment. How can we model the semantics of these highly dynamic features, yet still offer some reasonable safety guarantees? To this end we present an original calculus in which objects can adapt their behaviour at run-time. Both objects and environments are represented by first-class mappings between variables and values. Message sends are dynamically resolved to method calls. Variables may be dynamically bound, making it possible to model a variety of dynamic mechanisms within the same calculus. Despite the highly dynamic nature of the calculus, safety properties are assured by a type assignment system.
Resumo:
Concurrency control is mostly based on locks and is therefore notoriously difficult to use. Even though some programming languages provide high-level constructs, these add complexity and potentially hard-to-detect bugs to the application. Transactional memory is an attractive mechanism that does not have the drawbacks of locks, however the underlying implementation is often difficult to integrate into an existing language. In this paper we show how we have introduced transactional semantics into Smalltalk by using the reflective facilities of the language. Our approach is based on method annotations, incremental parse tree transformations and an optimistic commit protocol. The implementation does not depend on modifications to the virtual machine and therefore can be changed at the language level. We report on a practical case study, benchmarks and further and on-going work.
Resumo:
Systems must co-evolve with their context. Reverse engineering tools are a great help in this process of required adaption. In order for these tools to be flexible, they work with models, abstract representations of the source code. The extraction of such information from source code can be done using a parser. However, it is fairly tedious to build new parsers. And this is made worse by the fact that it has to be done over and over again for every language we want to analyze. In this paper we propose a novel approach which minimizes the knowledge required of a certain language for the extraction of models implemented in that language by reflecting on the implementation of preparsed ASTs provided by an IDE. In a second phase we use a technique referred to as Model Mapping by Example to map platform dependent models onto domain specific model.
Resumo:
In 186 patients with early colon cancer, we investigated the assumption that the meaning of 'quality of life' (QL) remains constant over time. Within a phase-III trial (SAKK 40/93), patients estimated both their overall QL and a range of disease- and treatment-related domains at five timepoints, comprising three concurrent and 2 retrospective estimates: their pre-surgery QL both before surgery and retrospectively thereafter, and their pre-adjuvant QL both at the beginning of adjuvant treatment and retrospectively about 2 months later, and their current QL 2 weeks thereafter. Multilevel models were developed to determine whether the selected domains made stable contributions to overall QL at the concurrent estimates. The weights of the domains changed over time. They did not differ significantly according to whether patients were considering their concurrent state or reflecting on this state at a later timepoint. In the process of adaptation, patients with early colon cancer substantially change the relative importance of QL domains to overall QL. This finding argues for QL as a changing construct and against the assumption that domain-specific weights are stable across distinct clinical phases.