28 resultados para DoS attack and defense mechanisms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anxiety and depression are the most frequently diagnosed psychological diseases showing a high co-morbidity. They have a severe impact on the lives of the persons concerned. Many meta-analytical studies suggested a positive anxiolytic and depression reducing effect of exercise programs. The aim of the present article is to synthesize metaanalyses on the effects of exercise on anxiety and depression and to describe average effect sizes. For this purpose 37 meta-analyses were included reporting 50 effect sizes for anxiety scores of 42,264 participants and depression scores of 48,207 persons. The average documented anxiolytic effect of exercise in these reviews was small, 0.34. In contrast, the effect of exercise on depression was significantly higher and at a moderate level, 0.56. Data of randomized controlled trials suggest higher sizes for the effect of exercise on anxiety and depression leading to increases up to moderate and large effects, respectively. Additionally, exercise seems to be more beneficial for patients compared to participants within a nonclinical, normal range of psychological disease. Especially for the effect of exercise on anxiety, more high quality meta-analyses of randomized controlled trials are needed. Finally, possible neurobiological explanations are suggested for the positive effect of exercise on psychological disorders like anxiety and depression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW To provide an overview of available evidence of the potential role of epigenetics in the pathogenesis of hypertension and vascular dysfunction. RECENT FINDINGS Arterial hypertension is a highly heritable condition. Surprisingly, however, genetic variants only explain a tiny fraction of the phenotypic variation and the term 'missing heritability' has been coined to describe this phenomenon. Recent evidence suggests that phenotypic alteration that is unrelated to changes in DNA sequence (thereby escaping detection by classic genetic methodology) offers a potential explanation. Here, we present some basic information on epigenetics and review recent work consistent with the hypothesis of epigenetically induced arterial hypertension. SUMMARY New technologies that enable the rigorous assessment of epigenetic changes and their phenotypic consequences may provide the basis for explaining the missing heritability of arterial hypertension and offer new possibilities for treatment and/or prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Roots play an important role for plant defence and resistance against pathogens and insect herbivores: They act as environmental sensors for space, nutrients and water, they are important biosynthetic sites of plant toxins, they can store assimilates for future regrowth, and they possess themselves a potent defensive system to fend off belowground attackers. Although roots are often seen as passive tissue that only delivers services to the rest of the plant, it is becoming increasingly evident that roots actively respond to environmental conditions and are a vital part of the plant’s signaling and perception machinery. This chapter summarizes what is known about roots as constituents of plant resistance and defense mechanisms, with a particular emphasis on signaling aspects. It also discusses how the increasing knowledge about roots can be used to help protect plants from harmful pests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with a transient ischemic attack and an acute stroke need urgent investigations and therapy in a stroke unit. Immediate investigation of the etiology and early secondary prevention measures reduce the likelihood of recurrent and other vascular events. In selected stroke patients intravenous thrombolysis and/or endovascular therapies lead to a significant reduction of long term disabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recurrent airway obstruction is one of the most common airway diseases affecting mature horses. Increased bronchoalveolar mucus, neutrophil accumulation in airways, and airway obstruction are the main features of this disease. Mucociliary clearance is a key component of pulmonary defense mechanisms. Cilia are the motile part of this system and a complex linear array of dynein motors is responsible for their motility by moving along the microtubules in the axonemes of cilia and flagella. We previously detected a QTL for RAO on ECA 13 in a half-sib family of European Warmblood horses. The gene encoding DNAH3 is located in the peak of the detected QTL and encodes a dynein subunit. Therefore, we analysed this gene as a positional and functional candidate gene for RAO. In a mutation analysis of all 62 exons we detected 53 new polymorphisms including 7 non-synonymous variants. We performed an association study using 38 polymorphisms in a cohort of 422 animals. However, after correction for multiple testing we did not detect a significant association of any of these polymorphisms with RAO (P>0.05). Therefore, it seems unlikely that variants at the DNAH3 gene are responsible for the RAO QTL in European Warmblood horses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological transport of intact proteins across epithelial cells has been documented for many absorptive and secretory tissues. Immunoglobulins were some of the earliest studied proteins in this category. The transcellular transport (transcytosis) of immunoglobulins in neonatal health and development has been recognized; the process is especially significant with ungulates because they do not transcytose immunoglobulins across the placenta to the neonate. Rather, they depend upon mammary secretion of colostrum and intestinal absorption of immunoglobulins in order to provide intestinal and systemic defense until the young ungulate develops its own humoral defense mechanisms. The neonatal dairy calf's ability to absorb immunoglobulins from colostrum is assisted by a ~24 h "open gut" phenomenon where large proteins pass the intestinal epithelial cells and enter the systemic system. However, a critical problem recognized for newborn dairy calves is that an optimum mass of colostrum Immunoglobulin G (IgG) needs to be absorbed within that 24 h window in order to provide maximal resistance to disease. Many calves do not achieve the optimum because of poor quality colostrum. While many studies have focused on calf absorption, the principal cause of the problem resides with the extreme variation (g to kg) in the mammary gland's capacity to transfer blood IgG1 into colostrum. Colostrum is a unique mammary secretory product that is formed during late pregnancy when mammary cells are proliferating and differentiating in preparation for lactation. In addition to the transcytosis of immunoglobulins, the mammary gland also concentrates a number of circulating hormones into colostrum. Remarkably, the mechanisms in the formation of colostrum in ungulates have been rather modestly studied. The mechanisms and causes of this variation in mammary gland transcytosis of IgG1 are examined, evaluated, and in some cases, explained

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant invertases are sucrolytic enzymes that are essential for the regulation of carbohydrate metabolism and source–sink relationships. While their activity has been well documented during abiotic and biotic stresses, the role of proteinaceous invertase inhibitors in regulating these changes is unknown. Here, we identify a putative Nicotiana attenuata cell wall invertase inhibitor (NaCWII) which is strongly up-regulated in a jasmonate (JA)-dependent manner following simulated attack by the specialist herbivore Manduca sexta. To understand the role of NaCWII in planta, we silenced its expression by RNA interference and measured changes in primary and secondary metabolism and plant growth following simulated herbivory. NaCWII-silenced plants displayed a stronger depletion of carbohydrates and a reduced capacity to increase secondary metabolite pools relative to their empty vector control counterparts. This coincided with the attenuation of herbivore-induced CWI inhibition and growth suppression characteristic of wild-type plants. Together our findings suggest that NaCWII may act as a regulatory switch located downstream of JA accumulation which fine-tunes the plant's balance between growth and defense metabolism under herbivore attack. Although carbohydrates are not typically viewed as key factors in plant growth and defense, our study shows that interfering with their catabolism strongly influences plant responses to herbivory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants have evolved intricate strategies to withstand attacks by herbivores and pathogens. Although it is known that plants change their primary and secondary metabolism in leaves to resist and tolerate aboveground attack, there is little awareness of the role of roots in these processes. This is surprising given that plant roots are responsible for the synthesis of plant toxins, play an active role in environmental sensing and defense signaling, and serve as dynamic storage organs to allow regrowth. Hence, studying roots is essential for a solid understanding of resistance and tolerance to leaf-feeding insects and pathogens. Here, we highlight this function of roots in plant resistance to aboveground attackers, with a special focus on systemic signaling and insect herbivores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Listeria (L.) monocytogenes causes fatal infections in many species including ruminants and humans. In ruminants, rhombencephalitis is the most prevalent form of listeriosis. Using multilocus variable number tandem repeat analysis (MLVA) we recently showed that L. monocytogenes isolates from ruminant rhombencephalitis cases are distributed over three genetic complexes (designated A, B and C). However, the majority of rhombencephalitis strains and virtually all those isolated from cattle cluster in MLVA complex A, indicating that strains of this complex may have increased neurotropism and neurovirulence. The aim of this study was to investigate whether ruminant rhombencephalitis strains have an increased ability to propagate in the bovine hippocampal brain-slice model and can be discriminated from strains of other sources. For this study, forty-seven strains were selected and assayed on brain-slice cultures, a bovine macrophage cell line (BoMac) and a human colorectal adenocarcinoma cell line (Caco-2). They were isolated from ruminant rhombencephalitis cases (n = 21) and other sources including the environment, food, human neurolisteriosis cases and ruminant/human non-encephalitic infection cases (n = 26). RESULTS All but one L. monocytogenes strain replicated in brain slices, irrespectively of the source of the isolate or MLVA complex. The replication of strains from MLVA complex A was increased in hippocampal brain-slice cultures compared to complex C. Immunofluorescence revealed that microglia are the main target cells for L. monocytogenes and that strains from MLVA complex A caused larger infection foci than strains from MLVA complex C. Additionally, they caused larger plaques in BoMac cells, but not CaCo-2 cells. CONCLUSIONS Our brain slice model data shows that all L. monocytogenes strains should be considered potentially neurovirulent. Secondly, encephalitis strains cannot be conclusively discriminated from non-encephalitis strains with the bovine organotypic brain slice model. The data indicates that MLVA complex A strains are particularly adept at establishing encephalitis possibly by virtue of their higher resistance to antibacterial defense mechanisms in microglia cells, the main target of L. monocytogenes.