26 resultados para Closed-loop Control
Resumo:
Invariant Natural Killer T cells (iNKT) are a versatile lymphocyte subset with important roles in both host defense and immunological tolerance. They express a highly conserved TCR which mediates recognition of the non-polymorphic, lipid-binding molecule CD1d. The structure of human iNKT TCRs is unique in that only one of the six complementarity determining region (CDR) loops, CDR3beta, is hypervariable. The role of this loop for iNKT biology has been controversial, and it is unresolved whether it contributes to iNKT TCR:CD1d binding or antigen selectivity. On the one hand, the CDR3beta loop is dispensable for iNKT TCR binding to CD1d molecules presenting the xenobiotic alpha-galactosylceramide ligand KRN7000, which elicits a strong functional response from mouse and human iNKT cells. However, a role for CDR3beta in the recognition of CD1d molecules presenting less potent ligands, such as self-lipids, is suggested by the clonal distribution of iNKT autoreactivity. We demonstrate that the human iNKT repertoire comprises subsets of greatly differing TCR affinity to CD1d, and that these differences relate to their autoreactive functions. These functionally different iNKT subsets segregate in their ability to bind CD1d-tetramers loaded with the partial agonist alpha-linked glycolipid antigen OCH and structurally different endogenous beta-glycosylceramides. Using surface plasmon resonance with recombinant iNKT TCRs and different ligand-CD1d complexes, we demonstrate that the CDR3beta sequence strongly impacts on the iNKT TCR affinity to CD1d, independent of the loaded CD1d ligand. Collectively our data reveal a crucial role for CDR3beta for the function of human iNKT cells by tuning the overall affinity of the iNKT TCR to CD1d. This mechanism is relatively independent of the bound CD1d ligand and thus forms the basis of an inherent, CDR3beta dependent functional hierarchy of human iNKT cells.
Resumo:
The Franches-Montagnes is an indigenous Swiss horse breed, with approximately 2500 foalings per year. The stud book is closed, and no introgression from other horse breeds was conducted since 1998. Since 2006, breeding values for 43 different traits (conformation, performance and coat colour) are estimated with a best linear unbiased prediction (BLUP) multiple trait animal model. In this study, we evaluated the genetic diversity for the breeding population, considering the years from 2003 to 2008. Only horses with at least one progeny during that time span were included. Results were obtained based on pedigree information as well as from molecular markers. A series of software packages were screened to combine best the best linear unbiased prediction (BLUP) methodology with optimal genetic contribution theory. We looked for stallions with highest breeding values and lowest average relationship to the dam population. Breeding with such stallions is expected to lead to a selection gain, while lowering the future increase in inbreeding within the breed.
Resumo:
OBJECTIVE: To analyze myoelectric activity of the ileum, cecum, proximal loop of the ascending colon (PLAC), and spiral colon in cows with naturally occurring cecal dilatation-dislocation (CDD) and compare findings with those in healthy cows. ANIMALS: 8 CDD-affected and 6 healthy control cows. PROCEDURES: Immediately after diagnosis, CDD-affected cows underwent surgery; control cows underwent a similar surgical procedure. Before completion of surgery, 8 bipolar silver electrodes were implanted in the ileum (n = 2), cecum (1), PLAC (1), and spiral colon (4) of each cow. Beginning the day after surgery, intestinal myoelectric activity was recorded daily (8-hour period) for 4 days; data were analyzed by use of specialized software programs. Quantitative variables of myoelectric activity were compared between groups. RESULTS: Cows of both groups recovered without complications after surgery. In control cows, physiologic myoelectric activity was recorded in all intestinal segments on all days after surgery. Apparently normal myoelectric activity was evident in the ileum of CDD-affected cows on the first day after surgery, but myoelectric activity patterns in the cecum, PLAC, and spiral colon were variable with no organized cyclic myoelectric patterns, incomplete or normally organized migrating myoelectric complexes, and slow normalization over time. CONCLUSIONS AND CLINICAL RELEVANCE: After surgery for CDD, normal myoelectric patterns were disrupted in the large intestine of cows, especially in the spiral colon. Clinical recovery with effective transit of ingesta occurred before normalization of myoelectric activity in the large intestine. Therapeutic protocols for restoration or normalization of spiral colon motility should be developed for treatment of CDD-affected cattle.
Resumo:
The spatio-temporal control of gene expression is fundamental to elucidate cell proliferation and deregulation phenomena in living systems. Novel approaches based on light-sensitive multiprotein complexes have recently been devised, showing promising perspectives for the noninvasive and reversible modulation of the DNA-transcriptional activity in vivo. This has lately been demonstrated in a striking way through the generation of the artificial protein construct light-oxygen-voltage (LOV)-tryptophan-activated protein (TAP), in which the LOV-2-Jα photoswitch of phototropin1 from Avena sativa (AsLOV2-Jα) has been ligated to the tryptophan-repressor (TrpR) protein from Escherichia coli. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their functioning as opto-genetical tools is still in its infancy. Here, we elucidate the early stages of the light-induced regulatory mechanism of LOV-TAP at the molecular level, using the noninvasive molecular dynamics simulation technique. More specifically, we find that Cys450-FMN-adduct formation in the AsLOV2-Jα-binding pocket after photoexcitation induces the cleavage of the peripheral Jα-helix from the LOV core, causing a change of its polarity and electrostatic attraction of the photoswitch onto the DNA surface. This goes along with the flexibilization through unfolding of a hairpin-like helix-loop-helix region interlinking the AsLOV2-Jα- and TrpR-domains, ultimately enabling the condensation of LOV-TAP onto the DNA surface. By contrast, in the dark state the AsLOV2-Jα photoswitch remains inactive and exerts a repulsive electrostatic force on the DNA surface. This leads to a distortion of the hairpin region, which finally relieves its tension by causing the disruption of LOV-TAP from the DNA.
Resumo:
OBJECTIVE: To describe the use of an endobronchial blocker (EBB) and to perform selective ventilation during pulmonary lobe resection via thoracotomy in a dog and report its accidental stapling in the resection site. STUDY DESIGN: Clinical case report. ANIMAL: One female dog with a suspected abscess or neoplasia of the right caudal pulmonary lobe. METHODS: One-lung ventilation was performed using a wire-guided EBB to seal the contaminated parenchyma and facilitate surgical access. The affected lung parenchyma was resected and the resection site was closed with staples. RESULTS: Lobar resection was performed successfully, but the loop of the EBB guide wire was inadvertently entrapped in the staple line of the lobectomy. Staples were removed to release the wire loop, and the resulting air leak caused loss of ventilation control until the parenchyma was re-sealed. CONCLUSIONS: We recommend removing the wire guide associate with the EBB after successful lung separation to avoid accidents that could have life-threatening consequences if not recognized. CLINICAL RELEVANCE: One-lung ventilation is useful to isolate healthy parenchyma from diseased parenchyma during lobectomy. Anesthesiologists and surgeons need to be aware of the potential complications associated with use of EBB.
Resumo:
BACKGROUND Contagious Bovine Pleuropneumonia (CBPP) is the most important chronic pulmonary disease of cattle on the African continent causing severe economic losses. The disease, caused by infection with Mycoplasma mycoides subsp. mycoides is transmitted by animal contact and develops slowly into a chronic form preventing an early clinical diagnosis. Because available vaccines confer a low protection rate and short-lived immunity, the rapid diagnosis of infected animals combined with traditional curbing measures is seen as the best way to control the disease. While traditional labour-intensive bacteriological methods for the detection of M. mycoides subsp. mycoides have been replaced by molecular genetic techniques in the last two decades, these latter approaches require well-equipped laboratories and specialized personnel for the diagnosis. This is a handicap in areas where CBPP is endemic and early diagnosis is essential. RESULTS We present a rapid, sensitive and specific diagnostic tool for M. mycoides subsp. mycoides detection based on isothermal loop-mediated amplification (LAMP) that is applicable to field conditions. The primer set developed is highly specific and sensitive enough to diagnose clinical cases without prior cultivation of the organism. The LAMP assay detects M. mycoides subsp. mycoides DNA directly from crude samples of pulmonary/pleural fluids and serum/plasma within an hour using a simple dilution protocol. A photometric detection of LAMP products allows the real-time visualisation of the amplification curve and the application of a melting curve/re-association analysis presents a means of quality assurance based on the predetermined strand-inherent temperature profile supporting the diagnosis. CONCLUSION The CBPP LAMP developed in a robust kit format can be run on a battery-driven mobile device to rapidly detect M. mycoides subsp. mycoides infections from clinical or post mortem samples. The stringent innate quality control allows a conclusive on-site diagnosis of CBPP such as during farm or slaughter house inspections.
Resumo:
We derive the fermion loop formulation for the supersymmetric nonlinear O(N) sigma model by performing a hopping expansion using Wilson fermions. In this formulation the fermionic contribution to the partition function becomes a sum over all possible closed non-oriented fermion loop configurations. The interaction between the bosonic and fermionic degrees of freedom is encoded in the constraints arising from the supersymmetry and induces flavour changing fermion loops. For N ≥ 3 this leads to fermion loops which are no longer self-avoiding and hence to a potential sign problem. Since we use Wilson fermions the bare mass needs to be tuned to the chiral point. For N = 2 we determine the critical point and present boson and fermion masses in the critical regime.
Resumo:
Translocation factor EF-G, possesses a low basal GTPase activity, which is stimulated by the ribosome. One potential region of the ribosome that triggers GTPase activity of EF-G is the Sarcin-Ricin-Loop (SRL) (helix 95) in domain VI of the 23S rRNA. Structural data showed that the tip of the SRL closely approaches GTP in the active center of EF-G, structural probing data confirmed that EF-G interacts with nucleotides G2655, A2660, G2661 and A2662.1-3 The exocyclic group of adenine at A2660 is required for stimulation of EF-G GTPase activity by the ribosome as demonstrated using atomic mutagenesis.4 Recent crystal structures of EF-G on the ribosome, gave more insights into the molecular mechanism of EF-G GTPase activity.5 Based on the structure of EF-Tu on the ribosome1, the following mechanism of GTPase activation was proposed: upon binding of EF-G to the ribosome, the conserved His92 (E.coli) changes its position, pointing to the γ-phosphate of GTP. In this activated state, the phosphate of residue A2662 of the SRL positions the catalytic His in its active conformation. It was further proposed that the phosphate oxygen of A2662 is involved in a charge-relay system, enabling GTP hydrolysis. In order to test this mechanism, we use the atomic mutagenesis approach, which allows introducing non-natural modifications in the SRL, in the context of the complete 70S ribosome. Therefore, we replaced one of the non-bridging oxygens of A2662 by a methyl group. A methylphosphonat is not able to position or activate a histidine, as it has no free electrons and therefore no proton acceptor function. These modified ribosomes were then tested for stimulation of EF-G GTPase activity. First experiments show that one of the two stereoisomers incorporated into ribosomes does not stimulate GTPase activity of EF-G, whereas the other is active. From this we conclude that indeed the non-bridging phosphate oxygen of A2662 is involved in EF-G GTPase activation by the ribosome. Ongoing experiments aim at revealing the contribution of this non-bridging oxygen at A2662 to the mechanism of EF-G GTPase activation at the atomic level.
Resumo:
We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.
Resumo:
OBJECTIVE Use of diuretics has been associated with an increased risk of gout. Data on different types of diuretics are scarce. We undertook this study to investigate the association between use of loop diuretics, thiazide or thiazide-like diuretics, and potassium-sparing agents and the risk of developing incident gout. METHODS We conducted a retrospective population-based case-control analysis using the General Practice Research Database established in the UK. We identified case patients who were diagnosed as having incident gout between 1990 and 2010. One control patient was matched to each case patient for age, sex, general practice, calendar time, and years of active history in the database. We used conditional logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs), and we adjusted for potential confounders. RESULTS We identified 91,530 incident cases of gout and the same number of matched controls. Compared to past use of diuretics from each respective drug class, adjusted ORs for current use of loop diuretics, thiazide diuretics, thiazide-like diuretics, and potassium-sparing diuretics were 2.64 (95% CI 2.47-2.83), 1.70 (95% CI 1.62-1.79), 2.30 (95% CI 1.95-2.70), and 1.06 (95% CI 0.91-1.23), respectively. Combined use of loop diuretics and thiazide diuretics was associated with the highest relative risk estimates of gout (adjusted OR 4.65 [95% CI 3.51-6.16]). Current use of calcium channel blockers or losartan slightly attenuated the risk of gout in patients who took diuretics. CONCLUSION Use of loop diuretics, thiazide diuretics, and thiazide-like diuretics was associated with an increased risk of incident gout, although use of potassium-sparing agents was not.
Resumo:
The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.