62 resultados para Cell Membrane Permeability


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5' end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3' end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Whisker follicles have multiple stem cell niches, including epidermal stem cells in the bulge as well as neural crest-derived stem cells and mast cell progenitors in the trabecular region. The neural crest-derived stem cells are a pool of melanocyte precursors. Previously, we found that the extracellular matrix glycoproteins tenascin-C and tenascin-W are expressed near CD34-positive cells in the trabecular stem cell niche of mouse whisker follicles. Here, we analyzed whiskers from tenascin-C knockout mice and found intrafollicular adipocytes and supernumerary mast cells. As Wnt/β-catenin signaling promotes melanogenesis and suppresses the differentiation of adipocytes and mast cells, we analyzed β-catenin subcellular localization in the trabecular niche. We found cytoplasmic and nuclear β-catenin in wild-type mice reflecting active Wnt/β-catenin signaling, whereas β-catenin in tenascin-C knockout mice was mostly cell membrane-associated and thus transcriptionally inactive. Furthermore, cells expressing the Wnt/β-catenin target gene cyclin D1 were enriched in the CD34-positive niches of wild-type compared to tenascin-C knockout mice. We then tested the effects of tenascins on this signaling pathway. We found that tenascin-C and tenascin-W can be co-precipitated with Wnt3a. In vitro, substrate bound tenascins promoted β-catenin-mediated transcription in the presence of Wnt3a, presumably due to the sequestration and concentration of Wnt3a near the cell surface. We conclude that the presence of tenascin-C in whiskers assures active Wnt/β-catenin signaling in the niche thereby maintaining the stem cell pool and suppressing aberrant differentiation, while in the knockout mice with reduced Wnt/β-catenin signaling, stem cells from the trabecular niche can differentiate into ectopic adipocytes and mast cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Somatostatin receptor subtype 2 (sst(2)) is widely expressed in neuroendocrine tumors and can be visualized immunohistochemically at the cell membrane for diagnostic purposes. Recently, it has been demonstrated in animal sst(2) tumor models in vivo that somatostatin analog treatment was able to induce a complete internalization of the tumor sst(2).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol, phospholipids, and other lipophilic molecules across cellular membranes. Recent data provide evidence that ABCA1 plays an important role in placental function but the exact cellular sites of ABCA1 action in the placenta remain controversial. To clarify this issue, we analyzed the cellular and subcellular localization of ABCA1 with immunocytochemistry, immunofluorescence and subsequent confocal or immunofluorescence microscopy in different types of isolated primary placenta cells: cytotrophoblast cells, amnion epithelial cells, villous macrophages (Hofbauer cells), and mesenchymal cells isolated from chorionic membrane and placental villi. After 12 h of cultivation, primary cytotrophoblast cells showed intensive membrane and cytoplasmic staining for ABCA1. After 24 h, with progressive syncytium formation, ABCA1 staining intensity was markedly reduced and ABCA1 was dispersed in the cytoplasm of the forming syncytial layer. In amnion epithelial cells, placental macrophages and mesenchymal cells, ABCA1 was predominantly localized at the cell membrane and cytoplasmic compartments partially corresponding to the endoplasmic reticulum. In these cell types, the ABCA1 staining intensity was not dependent on the cultivation time. In conclusion, ABCA1 shows marked expression levels in diverse placental cell types. The multitopic localization of ABCA1 in diverse human placental cells not all directly involved in materno-fetal exchange suggests that this protein may not only participate in transplacental lipid transport but could have additional regulatory functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FGFRL1 is a member of the fibroblast growth factor receptor family. It plays an essential role during branching morphogenesis of the metanephric kidneys, as mice with a targeted deletion of the Fgfrl1 gene show severe kidney dysplasia. Here we used the yeast two-hybrid system to demonstrate that FGFRL1 binds with its C-terminal, histidine-rich domain to Spred1 and to other proteins of the Sprouty/Spred family. Members of this family are known to act as negative regulators of the Ras/Raf/Erk signaling pathway. Truncation experiments further showed that FGFRL1 interacts with the SPR domain of Spred1, a domain that is shared by all members of the Sprouty/Spred family. The interaction could be verified by coprecipitation of the interaction partners from solution and by codistribution at the cell membrane of COS1 and HEK293 cells. Interestingly, Spred1 increased the retention time of FGFRL1 at the plasma membrane where the receptor might interact with ligands. FGFRL1 and members of the Sprouty/Spred family belong to the FGF synexpression group, which also includes FGF3, FGF8, Sef and Isthmin. It is conceivable that FGFRL1, Sef and some Sprouty/Spred proteins work in concert to control growth factor signaling during branching morphogenesis of the kidneys and other organs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The calcium-binding protein calreticulin (CRT) regulates protein folding in the endoplasmic reticulum (ER) and is induced in acute myeloid leukemia (AML) cells with activation of the unfolded protein response. Intracellular CRT translocation to the cell surface induces immunogenic cell death, suggesting a role in tumor suppression. In this study, we investigated CRT regulation in the serum of patients with AML. We found that CRT is not only exposed by exocytosis on the outer cell membrane after treatment with anthracyclin but also ultimately released to the serum in vitro and in AML patients during induction therapy. Leukemic cells of 113 AML patients showed increased levels of cell-surface CRT (P < .0001) and N-terminus serum CRT (P < .0001) compared with normal myeloid cells. Neutrophil elastase was identified to cleave an N-terminus CRT peptide, which was characterized as vasostatin and blocked ATRA-triggered differentiation. Levels of serum vasostatin in patients with AML inversely correlated with bone marrow vascularization, suggesting a role in antiangiogenesis. Finally, patients with increased vasostatin levels had longer relapse-free survival (P = .04) and specifically benefited from autologous transplantation (P = .006). Our data indicate that vasostatin is released from cell-surface CRT and impairs differentiation of myeloid cells and vascularization of the bone marrow microenvironment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dysferlin is a muscle protein involved in cell membrane repair and its deficiency is associated with muscular dystrophy. We describe that dysferlin is also expressed in leaky endothelial cells. In the normal central nervous system (CNS), dysferlin is only present in endothelial cells of circumventricular organs. In the inflamed CNS of patients with multiple sclerosis (MS) or in animals with experimental autoimmune encephalomyelitis, dysferlin reactivity is induced in endothelial cells and the expression is associated with vascular leakage of serum proteins. In MS, dysferlin expression in endothelial cells is not restricted to vessels with inflammatory cuffs but is also present in noninflamed vessels. In addition, many blood vessels with perivascular inflammatory infiltrates lack dysferlin expression in inactive lesions or in the normal-appearing white matter. In vitro, dysferlin can be induced in endothelial cells by stimulation with tumor necrosis factor-alpha. Hence, dysferlin is not only a marker for leaky brain vessels, but also reveals dissociation of perivascular inflammatory infiltrates and blood-brain barrier disturbance in multiple sclerosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

So far, little is known about the interaction of nanoparticles with lung cells, the entering of nanoparticles, and their transport through the blood stream to other organs. The entering and localization of different nanoparticles consisting of differing materials and of different charges were studied in human red blood cells. As these cells do not have any phagocytic receptors on their surface, and no actinmyosin system, we chose them as a model for nonphagocytic cells to study how nanoparticles penetrate cell membranes. We combined different microscopic techniques to visualize fine and nanoparticles in red blood cells: (I) fluorescent particles were analyzed by laser scanning microscopy combined with digital image restoration, (II) gold particles were analyzed by conventional transmission electron microscopy and energy filtering transmission electron microscopy, and (III) titanium dioxide particles were analyzed by energy filtering transmission electron microscopy. By using these differing microscopic techniques we were able to visualize and detect particles < or = 0.2 microm and nanoparticles in red blood cells. We found that the surface charge and the material of the particles did not influence their entering. These results suggest that particles may penetrate the red blood cell membrane by a still unknown mechanism different from phagocytosis and endocytosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytosolic CuZn-SOD (SOD1) is a dimeric, carbohydrate-free enzyme with a molecular weight of about 32 kDa and also circulates in human blood plasma. Due to its molecular mass it has been believed that the enzyme cannot penetrate the cell membrane. Here we report that rapid endocytosis of FITC-CuZn-SOD into human endothelial cells occurs within 5 min. Moreover, relaxation of rat aortic rings in response to CuZn-SOD is associated with a lag time of 45-60 s and only observed in the presence of intact endothelial cells. The results indicate acute and rapid endothelial cell endocytosis of CuZn-SOD, possibly via activation of a receptor-mediated pathway. Intracellular uptake via endocytosis may contribute to the vascular effects of CuZn-SOD, including vasodilation, and is likely to play a role in regulation of vascular tone and diseases such as atherosclerosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.