31 resultados para CRYSTAL STRUCTURE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 A) and in complex with acarbose (to 1.9 A). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translation initiation factors eIF4A and eIF4G form, together with the cap-binding factor eIF4E, the eIF4F complex, which is crucial for recruiting the small ribosomal subunit to the mRNA 5' end and for subsequent scanning and searching for the start codon. eIF4A is an ATP-dependent RNA helicase whose activity is stimulated by binding to eIF4G. We report here the structure of the complex formed by yeast eIF4G's middle domain and full-length eIF4A at 2.6-A resolution. eIF4A shows an extended conformation where eIF4G holds its crucial DEAD-box sequence motifs in a productive conformation, thus explaining the stimulation of eIF4A's activity. A hitherto undescribed interaction involves the amino acid Trp-579 of eIF4G. Mutation to alanine results in decreased binding to eIF4A and a temperature-sensitive phenotype of yeast cells that carry a Trp579Ala mutation as its sole source for eIF4G. Conformational changes between eIF4A's closed and open state provide a model for its RNA-helicase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of 4,5-bis(2'-cyanoethylsulfanyl)-4',5'-dipropylthiotetrathiafulvalene with Pt(phen)Cl-2 (phen = 1,10-phenanthroline) with CsOH as base in CH3OH-THE affords the target complex I in 44% yield. This complex crystallizes in the monoclinic space group P2(1)/c, M = 790.01, a = 12.1732(12), b = 15.851(2), c = 14.5371(16) angstrom, beta = 107.693(12)degrees, V = 2672.4(5) angstrom(3) and Z = 4. It undergoes two reversible single-electron oxidation and two irreversible reduction processes. An intense electronic absorption band at 15200 cm(-1) (658 nm) in CH2Cl2 is assigned to the intramolecular mixed metal/ligand-to-ligand charge transfer (LLCT) from a tetrathiafulvalene-extended dithiolate-based HOMO to a phenanthroline-based LUMO. This band shifts hypsochromically with increasing solvent polarity. Systematic changes in the optical spectra upon oxidation allow precise tuning of the oxidation states of 1 and reversible control over its optical properties. Irradiation of 1 at 15625 cm(-1) (640 nm) in glassy solution below 150K results in emission from the (LLCT)-L-3 excited state. GRAPHICS (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium-proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium-proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer. In this new structure, we observe a salt bridge between an essential aspartic acid (Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in the homologous transporter NapA, but not in the only other known crystal structure of NhaA, which provides the foundation of most existing structural models of electrogenic sodium-proton antiport. Molecular dynamics simulations show that the stability of the salt bridge is weakened by sodium ions binding to Asp164 and the neighboring Asp163. This suggests that the transport mechanism involves Asp163 switching between forming a salt bridge with Lys300 and interacting with the sodium ion. pKa calculations suggest that Asp163 is highly unlikely to be protonated when involved in the salt bridge. As it has been previously suggested that Asp163 is one of the two residues through which proton transport occurs, these results have clear implications to the current mechanistic models of sodium-proton antiport in NhaA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel functionalized bis(ethylenedithio)tetrathiafulvalene (BEDT–TTF) derivatives 4 and 5 have been synthesized in good yields from cyano precursor via a cross-coupling reaction. Their redox potentials have been studied by cyclic voltammetry in a dichloromethane solution; this indicated that they are slightly weaker electron donors than BEDT–TTF. Compound 4 has been studied by X–ray crystallography; this revealed that, in the crystal, the molecules were held together by some unconventional C–H···N and C–H···S hydrogen bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of the first bidimensional copper(II) compound containing only thiocyanate as bridging ligands [Cu(bpy)(NCS) 2 ] n , where bpy=2,2'-bipyridyl, has been determined by X-ray diffraction on single-crystals. Two different environments for both types of copper(II) ions in the unit cell are apparent: a distorted octahedron and a square pyramid. A bidimensional structure with a deformed honeycomb-layer motif is formed, the bipyridyl ligands filling the interlayer space. The magnetic susceptibility data of the compound have been investigated between 280 and 1.8 K. The compound presents a very weak antiferromagnetic interaction that has been fitted by using the Bleaney-Bowers expression for a dimeric unit, whereby a J value of -1.01(1) cm - 1 (H=-JS 1 .S 2 ) and a g value of 2.08(1) have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title compound, C21H33N3O3, is a tri-substituted cyclo­hex­yloxy triazine. In the crystal, the triazine rings form (C3i-PU) Piedfort units. The inter-centroid distance of the [pi]-[pi] inter­action involving the triazine rings is 3.3914 (10) Å. In the crystal, mol­ecules are linked by C-H...O hydrogen bonds, forming ribbons propagating along [1-10]. There are also weak C-H...N and C-H...O contacts present, linking inversion-related ribbons, forming a three-dimensional structure.