32 resultados para Basomedial Amygdala
Resumo:
CONTEXT: A characteristic feature of borderline personality disorder (BPD) is self-injurious behavior in conjunction with stress-induced reduction of pain perception. Reduced pain sensitivity has been experimentally confirmed in patients with BPD, but the neural correlates of antinociceptive mechanisms in BPD are unknown. We predicted that heat stimuli in patients with BPD would activate brain areas concerned with cognitive and emotional evaluation of pain. OBJECTIVE: To assess the psychophysical properties and neural correlates of altered pain processing in patients with BPD. DESIGN: Case-control study. SETTING: A university hospital. PARTICIPANTS: Twelve women with BPD and self-injurious behavior and 12 age-matched control subjects. INTERVENTIONS: Psychophysical assessment and blood oxygen level-dependent functional magnetic resonance imaging during heat stimulation with fixed-temperature heat stimuli and individual-temperature stimuli adjusted for equal subjective pain in all the participants. MAIN OUTCOME MEASURE: Blood oxygen level-dependent functional magnetic resonance imaging signal changes during heat pain stimulation. RESULTS: Patients with BPD had higher pain thresholds and smaller overall volumes of activity than controls in response to identical heat stimuli. When the stimulus temperature was individually adjusted for equal subjective pain level, overall volumes of activity were similar, although regional patterns differed significantly. Patient response was greater in the dorsolateral prefrontal cortex and smaller in the posterior parietal cortex. Pain also produced neural deactivation in the perigenual anterior cingulate gyrus and the amygdala in patients with BPD. CONCLUSION: The interaction between increased pain-induced response in the dorsolateral prefrontal cortex and deactivation in the anterior cingulate and the amygdala is associated with an antinociceptive mechanism in patients with BPD.
Resumo:
Recent brain imaging work has expanded our understanding of the mechanisms of perceptual, cognitive, and motor functions in human subjects, but research into the cerebral control of emotional and motivational function is at a much earlier stage. Important concepts and theories of emotion are briefly introduced, as are research designs and multimodal approaches to answering the central questions in the field. We provide a detailed inspection of the methodological and technical challenges in assessing the cerebral correlates of emotional activation, perception, learning, memory, and emotional regulation behavior in healthy humans. fMRI is particularly challenging in structures such as the amygdala as it is affected by susceptibility-related signal loss, image distortion, physiological and motion artifacts and colocalized Resting State Networks (RSNs). We review how these problems can be mitigated by using optimized echo-planar imaging (EPI) parameters, alternative MR sequences, and correction schemes. High-quality data can be acquired rapidly in these problematic regions with gradient compensated multiecho EPI or high resolution EPI with parallel imaging and optimum gradient directions, combined with distortion correction. Although neuroimaging studies of emotion encounter many difficulties regarding the limitations of measurement precision, research design, and strategies of validating neuropsychological emotion constructs, considerable improvement in data quality and sensitivity to subtle effects can be achieved. The methods outlined offer the prospect for fMRI studies of emotion to provide more sensitive, reliable, and representative models of measurement that systematically relate the dynamics of emotional regulation behavior with topographically distinct patterns of activity in the brain. This will provide additional information as an aid to assessment, categorization, and treatment of patients with emotional and personality disorders.
Resumo:
The reward systemin schizophrenia has been linked to the emergence of delusions on the one hand and to negative symptoms such as affective flattening on the other hand. Previous Diffusion Tensor Imaging (DTI) studies reported white matter microstructure alterations of regions related to the reward system. The present study aimed at extending these findings by specifically investigating connection pathways of the reward system in schizophrenia. Therefore, 24 patients with schizophrenia and 22 healthy controls matched for age and gender underwent DTI-scans. Using a probabilistic fiber tracking approachwe bilaterally extracted pathways connecting the ventral tegmental area (VTA) with the nucleus accumbens (NAcc), themedial and lateral orbitofrontal cortices (mOFC, lOFC), the dorsolateral prefrontal cortex (dlPFC) and the amygdala; as well as pathways connecting NAcc with mOFC, lOFC, dlPFC and amygdala resulting in a total of 18 connections. Probability indices forming part of a bundle of interest (PIBI) were compared between groups using independent t-tests. In 6 connection pathways PIBI-valueswere increased in schizophrenia. In 3 of these pathways the spatial extension of connection pathways was decreased. In schizophrenia patients, there was a negative correlation of PIBI-values and PANSS negative scores in the left VTA–amygdala and in the left NAcc–mOFC connection. A sum score of delusions and hallucinations correlated positively with PIBI-values of the left amygdala–NAcc connection. Structural organization of specific segments ofwhite matter pathways of the reward systemin schizophrenia may contribute to the emergence of delusions and negative symptoms in schizophrenia.
Resumo:
Obsessive-compulsive disorder (OCD) is a disabling, mostly chronic, psychiatric condition with significant social and economic impairments and is a major public health issue. However, numerous patients are resistant to currently available pharmacological and psychological interventions. Given that recent animal studies and magnetic resonance spectroscopy research points to glutamate dysfunction in OCD, we investigated the metabotropic glutamate receptor 5 (mGluR5) in patients with OCD and healthy controls. We determined mGluR5 distribution volume ratio (DVR) in the brain of ten patients with OCD and ten healthy controls by using [11C]ABP688 positron-emission tomography. As a clinical measure of OCD severity, the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was employed. We found no significant global difference in mGluR5 DVR between patients with OCD and healthy controls. We did, however, observe significant positive correlations between the Y-BOCS obsession sub-score and mGluR5 DVR in the cortico-striatal-thalamo-cortical brain circuit, including regions of the amygdala, anterior cingulate cortex, and medial orbitofrontal cortex (Spearman's ρ's⩾ = 0.68, p < 0.05). These results suggest that obsessions in particular might have an underlying glutamatergic pathology related to mGluR5. The research indicates that the development of metabotropic glutamate agents would be useful as a new treatment for OCD.
Resumo:
Quintessenz • Jeder zweite Arzt erlebt im Laufe seiner Berufstätigkeit Gewalt. • Höchstes Gewaltrisiko haben medizinisches Personal in Ausbildung, weibliche Angestellte und Mitarbeiter in der Psychiatrie und den Notfallzentren. • Es gibt ex- und intrinsische Risikofaktoren für aggressives Verhalten von Patienten und Angehörigen gegenüber medizinischem Personal. • Internistische, neurologische und psychiatrische Störungen (inklusive Alkohol-/Drogenintoxikation) sowie medikamentöse Therapien können von aggressiven Verhaltensweisen begleitet sein. • Auf neurobiologischer Ebene handelt es sich um ein Ungleichgewicht im System des frontalen Cortex, anterioren Gyrus cinguli und der Amygdala. • Folgen eines Gewaltakts reichen von körperlichen und psychischen Problemen des Betroffenen bis hin zu ständigen Personalwechseln, Rekrutierungsproblemen und Wettrüsten der Institutionen. • Es wird eine «Null-Toleranz-Politik» gegen Gewalt im medizinischen Bereich und die Teilnahme an Kursen für Aggressionsmanagement empfohlen
Resumo:
Music is an intriguing stimulus widely used in movies to increase the emotional experience. However, no brain imaging study has to date examined this enhancement effect using emotional pictures (the modality mostly used in emotion research) and musical excerpts. Therefore, we designed this functional magnetic resonance imaging study to explore how musical stimuli enhance the feeling of affective pictures. In a classical block design carefully controlling for habituation and order effects, we presented fearful and sad pictures (mostly taken from the IAPS) either alone or combined with congruent emotional musical excerpts (classical pieces). Subjective ratings clearly indicated that the emotional experience was markedly increased in the combined relative to the picture condition. Furthermore, using a second-level analysis and regions of interest approach, we observed a clear functional and structural dissociation between the combined and the picture condition. Besides increased activation in brain areas known to be involved in auditory as well as in neutral and emotional visual-auditory integration processes, the combined condition showed increased activation in many structures known to be involved in emotion processing (including for example amygdala, hippocampus, parahippocampus, insula, striatum, medial ventral frontal cortex, cerebellum, fusiform gyrus). In contrast, the picture condition only showed an activation increase in the cognitive part of the prefrontal cortex, mainly in the right dorsolateral prefrontal cortex. Based on these findings, we suggest that emotional pictures evoke a more cognitive mode of emotion perception, whereas congruent presentations of emotional visual and musical stimuli rather automatically evoke strong emotional feelings and experiences.
Resumo:
Promises are one of the oldest human-specific psychological mechanisms fostering cooperation and trust. Here, we study the neural underpinnings of promise keeping and promise breaking. Subjects first make a promise decision (promise stage), then they anticipate whether the promise affects the interaction partner's decision (anticipation stage) and are subsequently free to keep or break the promise (decision stage). Findings revealed that the breaking of the promise is associated with increased activation in the DLPFC, ACC, and amygdala, suggesting that the dishonest act involves an emotional conflict due to the suppression of the honest response. Moreover, the breach of the promise can be predicted by a perfidious brain activity pattern (anterior insula, ACC, inferior frontal gyrus) during the promise and anticipation stage, indicating that brain measurements may reveal malevolent intentions before dishonest or deceitful acts are actually committed.
Resumo:
Trust and betrayal of trust are ubiquitous in human societies. Recent behavioral evidence shows that the neuropeptide oxytocin increases trust among humans, thus offering a unique chance of gaining a deeper understanding of the neural mechanisms underlying trust and the adaptation to breach of trust. We examined the neural circuitry of trusting behavior by combining the intranasal, double-blind, administration of oxytocin with fMRI. We find that subjects in the oxytocin group show no change in their trusting behavior after they learned that their trust had been breached several times while subjects receiving placebo decrease their trust. This difference in trust adaptation is associated with a specific reduction in activation in the amygdala, the midbrain regions, and the dorsal striatum in subjects receiving oxytocin, suggesting that neural systems mediating fear processing (amygdala and midbrain regions) and behavioral adaptations to feedback information (dorsal striatum) modulate oxytocin's effect on trust. These findings may help to develop deeper insights into mental disorders such as social phobia and autism, which are characterized by persistent fear or avoidance of social interactions.
Resumo:
Strategies of cognitive control are helpful in reducing anxiety experienced during anticipation of unpleasant or potentially unpleasant events. We investigated the associated cerebral information processing underlying the use of a specific cognitive control strategy during the anticipation of affect-laden events. Using functional magnetic resonance imaging, we examined differential brain activity during anticipation of events of unknown and negative emotional valence in a group of eighteen healthy subjects that used a cognitive control strategy, similar to "reality checking" as used in psychotherapy, compared with a group of sixteen subjects that did not exert cognitive control. While expecting unpleasant stimuli, the "cognitive control" group showed higher activity in left medial and dorsolateral prefrontal cortex areas but reduced activity in the left extended amygdala, pulvinar/lateral geniculate nucleus and fusiform gyrus. Cognitive control during the "unknown" expectation was associated with reduced amygdalar activity as well and further with reduced insular and thalamic activity. The amygdala activations associated with cognitive control correlated negatively with the reappraisal scores of an emotion regulation questionnaire. The results indicate that cognitive control of particularly unpleasant emotions is associated with elevated prefrontal cortex activity that may serve to attenuate emotion processing in for instance amygdala, and, notably, in perception related brain areas.
Resumo:
Patients suffering from bipolar affective disorder show deficits in working memory functions. In a previous functional magnetic resonance imaging study, we observed an abnormal hyperactivity of the amygdala in bipolar patients during articulatory rehearsal in verbal working memory. In the present study, we investigated the dynamic neurofunctional interactions between the right amygdala and the brain systems that underlie verbal working memory in both bipolar patients and healthy controls. In total, 18 euthymic bipolar patients and 18 healthy controls performed a modified version of the Sternberg item-recognition (working memory) task. We used the psychophysiological interaction approach in order to assess functional connectivity between the right amygdala and the brain regions involved in verbal working memory. In healthy subjects, we found significant negative functional interactions between the right amygdala and multiple cortical brain areas involved in verbal working memory. In comparison with the healthy control subjects, bipolar patients exhibited significantly reduced functional interactions of the right amygdala particularly with the right-hemispheric, i.e., ipsilateral, cortical regions supporting verbal working memory. Together with our previous finding of amygdala hyperactivity in bipolar patients during verbal rehearsal, the present results suggest that a disturbed right-hemispheric “cognitive–emotional” interaction between the amygdala and cortical brain regions underlying working memory may be responsible for amygdala hyperactivation and affects verbal working memory (deficits) in bipolar patients.
Resumo:
Dealing with one's emotions is a core skill in everyday life. Effective cognitive control strategies have been shown to be neurobiologically represented in prefrontal structures regulating limbic regions. In addition to cognitive strategies, mindfulness-associated methods are increasingly applied in psychotherapy. We compared the neurobiological mechanisms of these two strategies, i.e. cognitive reappraisal and mindfulness, during both the cued expectation and perception of negative and potentially negative emotional pictures. Fifty-three healthy participants were examined with functional magnetic resonance imaging (47 participants included in analysis). Twenty-four subjects applied mindfulness, 23 used cognitive reappraisal. On the neurofunctional level, both strategies were associated with comparable activity of the medial prefrontal cortex and the amygdala. When expecting negative versus neutral stimuli, the mindfulness group showed stronger activations in ventro- and dorsolateral prefrontal cortex, supramarginal gyrus as well as in the left insula. During the perception of negative versus neutral stimuli, the two groups only differed in an increased activity in the caudate in the cognitive group. Altogether, both strategies recruited overlapping brain regions known to be involved in emotion regulation. This result suggests that common neural circuits are involved in the emotion regulation by mindfulness-based and cognitive reappraisal strategies. Identifying differential activations being associated with the two strategies in this study might be one step towards a better understanding of differential mechanisms of change underlying frequently used psychotherapeutic interventions.
Resumo:
Many people routinely criticise themselves. While self-criticism is largely unproblematic for most individuals, depressed patients exhibit excessive self-critical thinking, which leads to strong negative affects. We used functional magnetic resonance imaging in healthy subjects (N = 20) to investigate neural correlates and possible psychological moderators of self-critical processing. Stimuli consisted of individually selected adjectives of personally negative content and were contrasted with neutral and negative non-self-referential adjectives. We found that confrontation with self-critical material yielded neural activity in regions involved in emotions (anterior insula/hippocampus-amygdala formation) and in anterior and posterior cortical midline structures, which are associated with self-referential and autobiographical memory processing. Furthermore, contrasts revealed an extended network of bilateral frontal brain areas. We suggest that the co-activation of superior and inferior lateral frontal brain regions reflects the recruitment of a frontal top-down pathway, representing cognitive reappraisal strategies for dealing with evoked negative affects. In addition, activation of right superior frontal areas was positively associated with neuroticism and negatively associated with cognitive reappraisal. Although these findings may not be specific to negative stimuli, they support a role for clinically relevant personality traits in successful regulation of emotion during confrontation with self-critical material.
Resumo:
We investigated the neural mechanisms and the autonomic and cognitive responses associated with visual avoidance behavior in spider phobia. Spider phobic and control participants imagined visiting different forest locations with the possibility of encountering spiders, snakes, or birds (neutral reference category). In each experimental trial, participants saw a picture of a forest location followed by a picture of a spider, snake, or bird, and then rated their personal risk of encountering these animals in this context, as well as their fear. The greater the visual avoidance of spiders that a phobic participant demonstrated (as measured by eye tracking), the higher were her autonomic arousal and neural activity in the amygdala, orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and precuneus at picture onset. Visual avoidance of spiders in phobics also went hand in hand with subsequently reduced cognitive risk of encounters. Control participants, in contrast, displayed a positive relationship between gaze duration toward spiders, on the one hand, and autonomic responding, as well as OFC, ACC, and precuneus activity, on the other hand. In addition, they showed reduced encounter risk estimates when they looked longer at the animal pictures. Our data are consistent with the idea that one reason for phobics to avoid phobic information may be grounded in heightened activity in the fear circuit, which signals potential threat. Because of the absence of alternative efficient regulation strategies, visual avoidance may then function to down-regulate cognitive risk evaluations for threatening information about the phobic stimuli. Control participants, in contrast, may be characterized by a different coping style, whereby paying visual attention to potentially threatening information may help them to actively down-regulate cognitive evaluations of risk.
Resumo:
We investigated whether amygdala activation, autonomic responses, respiratory responses, and facial muscle activity (measured over the brow and cheek [fear grin] regions) are all sensitive to phobic versus nonphobic fear and, more importantly, whether effects in these variables vary as a function of both phobic and nonphobic fear intensity. Spider-phobic and comparably low spider-fearful control participants imagined encountering different animals and rated their subjective fear while their central and peripheral nervous system activity was measured. All measures included in our study were sensitive to variations in subjective fear, but were related to different ranges and positions on the subjective fear level continuum. Left amygdala activation, heart rate, and facial muscle activity over the cheek region captured fear intensity variations even within narrowly described regions on the fear level continuum (here within extremely low levels of fear and within considerable phobic fear). Skin conductance and facial muscle activity over the brow region did not capture fear intensity variations within low levels of fear: skin conductance mirrored only extreme levels of fear, and activity over the brow region distinguished phobic from nonphobic fear but also low-to-moderate and high phobic fear. Finally, respiratory measures distinguished phobic from nonphobic fear with no further differentiation within phobic and nonphobic fear. We conclude that a careful consideration of the measures to be used in an investigation and the population to be examined can be critical in order to obtain significant results.
Resumo:
BACKGROUND During threat, interpersonal distance is deliberately increased. Personal space regulation is related to amygdala function and altered in schizophrenia, but it remains unknown whether it is particularly associated with paranoid threat. METHODS We compared performance in two tests on personal space between 64 patients with schizophrenia spectrum disorders and 24 matched controls. Patients were stratified in those with paranoid threat, neutral affect or paranoid experience of power. In the stop-distance paradigm, participants indicated the minimum tolerable interpersonal distance. In the fixed-distance paradigm, they indicated the level of comfort at fixed interpersonal distances. RESULTS Paranoid threat increased interpersonal distance two-fold in the stop-distance paradigm, and reduced comfort ratings in the fixed-distance paradigm. In contrast, patients experiencing paranoid power had high comfort ratings at any distance. Patients with neutral affect did not differ from controls in the stop-distance paradigm. Differences between groups remained when controlling for gender and positive symptom severity. Among schizophrenia patients, the stop-distance paradigm detected paranoid threat with 93% sensitivity and 83% specificity. CONCLUSIONS Personal space regulation is not generally altered in schizophrenia. However, state paranoid experience has distinct contributions to personal space regulation. Subjects experiencing current paranoid threat share increased safety-seeking behavior.