21 resultados para AC IMPEDANCE
Resumo:
Background A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results. Methods In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration. Results Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow. Conclusions We conclude that the presented method is able to determine global respiratory gas flow of the lung in different phases of the respiratory cycle. Additionally, it delivers meaningful insight into regional pulmonary characteristics, i.e. the regional ability of the lung to take up and to release air.
Resumo:
BACKGROUND & AIMS: Esophageal impedance measurements have been proposed to indicate the status of the esophageal mucosa, and might be used to study the roles of the impaired mucosal integrity and increased acid sensitivity in patients with heartburn. We compared baseline impedance levels among patients with heartburn who did and did not respond to proton pump inhibitor (PPI) therapy, along with the pathophysiological characteristics of functional heartburn (FH). METHODS: In a case-control study, we collected data from January to December 203 on patients with heartburn and normal findings from endoscopy who were not receiving PPI therapy and underwent impedance pH testing at hospitals in Italy. Patients with negative test results were placed on an 8-week course of PPI therapy (84 patients received esomeprazole and 36 patients received pantoprazole). Patients with more than 50% symptom improvement were classified as FH/PPI responders and patients with less than 50% symptom improvement were classified as FH/PPI nonresponders. Patients with hypersensitive esophagus and healthy volunteers served as controls. In all patients and controls, we measured acid exposure time, number of refluxes, baseline impedance, and swallow-induced peristaltic wave indices. RESULTS: FH/PPI responders had higher acid exposure times, numbers of reflux events, and acid refluxes compared with FH/PPI nonresponders (P < .05). Patients with hypersensitive esophagus had mean acid exposure times and numbers of reflux events similar to those of FH/PPI responders. Baseline impedance levels were lower in FH/PPI responders and patients with hypersensitive esophagus, compared with FH/PPI nonresponders and healthy volunteers (P < .001). Swallow-induced peristaltic wave indices were similar between FH/PPI responders and patients with hypersensitive esophagus. CONCLUSIONS: Patients with FH who respond to PPI therapy have impedance pH features similar to those of patients with hypersensitive esophagus. Baseline impedance measurements might allow for identification of patients who respond to PPIs but would be classified as having FH based on conventional impedance-pH measurements.
Resumo:
The function of the esophagus is transporting nutrients from the oropharyngeal cavity to the stomach. This is achieved by coordinated contractions and relaxation of the tubular esophagus and the upper and lower esophageal sphincter. Multichannel intraluminal impedance monitoring offers quantification of esophageal bolus transit and/or retention without the use of ionizing radiation. Combined with conventional or high-resolution manometry, impedance measurements complement the quantification of esophageal body contraction and sphincter relaxation, offering a more comprehensive evaluation of esophageal function. Further studies evaluating the utility of quantifying bolus transit will help clarify the role and position of impedance measurements.
Resumo:
Background: Dental erosion is a complication of gastro-oesophageal reflux disease (GORD) according to the Montreal consensus statement. However, GORD has not been comprehensively characterized in patients with dental erosions and pH-impedance measures have not been reported. Objectives: Characterize GORD in patients with dental erosions using 24-h multichannel intraluminal pH-impedance measurements (pH-MII) and endoscopy. Methods: This single-centre study investigated reflux in successive patients presenting to dentists with dental erosion using pH-MII and endoscopy. Results: Of the 374 patients, 298 (80%) reported GORD symptoms <2 per week, 72 (19%) had oesophagitis and 59 (16%) had a hiatal hernia. In the 349 with pH-MII the mean percentage time with a pH <4 (95% CI) was 11.0 (9.3–12.7), and 34.4% (31.9–36.9) for a pH <5.5, a critical threshold for dental tissue. The mean numbers of total, acidic and weakly acidic reflux episodes were 71 (63–79), 43 (38–49) and 31 (26–35), respectively. Of the reflux episodes, 19% (17–21) reached the proximal oesophagus. In 241 (69%) patients reflux was abnormal using published normal values for acid exposure time and reflux episodes. No significant associations between the severity of dental erosions and any reflux variables were found. The presence of GORD symptoms and of oesophagitis or a hiatal hernia was associated with greater reflux, but not with increased dental erosion scores. Conclusions: Significant oligosymptomatic gastro-oesophageal reflux occurs in the majority of patients with dental erosion. The degree of dental erosion did not correlate with any of the accepted quantitative reflux indicators. Definition of clinically relevant reflux parameters by pH-MII for dental erosion and of treatment guidelines are outstanding. Gastroenterologists and dentists need to be aware of the widely prevalent association between dental erosion and atypical GORD.
Resumo:
BACKGROUND Oesophageal clearance has been scarcely studied. AIMS Oesophageal clearance in endoscopy-negative heartburn was assessed to detect differences in bolus clearance time among patients sub-grouped according to impedance-pH findings. METHODS In 118 consecutive endoscopy-negative heartburn patients impedance-pH monitoring was performed off-therapy. Acid exposure time, number of refluxes, baseline impedance, post-reflux swallow-induced peristaltic wave index and both automated and manual bolus clearance time were calculated. Patients were sub-grouped into pH/impedance positive (abnormal acid exposure and/or number of refluxes) and pH/impedance negative (normal acid exposure and number of refluxes), the former further subdivided on the basis of abnormal/normal acid exposure time (pH+/-) and abnormal/normal number of refluxes (impedance+/-). RESULTS Poor correlation (r=0.35) between automated and manual bolus clearance time was found. Manual bolus clearance time progressively decreased from pH+/impedance+ (42.6s), pH+/impedance- (27.1s), pH-/impedance+ (17.8s) to pH-/impedance- (10.8s). There was an inverse correlation between manual bolus clearance time and both baseline impedance and post-reflux swallow-induced peristaltic wave index, and a direct correlation between manual bolus clearance and acid exposure time. A manual bolus clearance time value of 14.8s had an accuracy of 93% to differentiate pH/impedance positive from pH/impedance negative patients. CONCLUSIONS When manually measured, bolus clearance time reflects reflux severity, confirming the pathophysiological relevance of oesophageal clearance in reflux disease.