26 resultados para 7000
Resumo:
This paper presents the first comprehensive analysis of sediment and dissolved load across an entire mountain range. We investigate patterns and rates of modern denudation of the European Alps based on a compilation of data about river loads and reservoir sedimentation from 202 drainage basins that are between ca. 1 to 10,000 km2 large. The study basins cover about 50% of the total area of the Alps. Modern glaciated basins have the highest sediment yields of up to 7000 t km− 2 a− 1, which are on average 5 to 10 times higher than in non-glaciated basins. Likewise sediment yield and glacial cover are positively correlated. Instead, relief is a relatively weak predictor of sediment yield. The strong glacial impact in the correlations is due to glacier recession since the 19th century as well as due to glacial conditioning during repeated Quaternary glaciations which have produced the strong transient state of the Alpine landscape. We suggest that this is the major cause for ca. 3 fold enhanced denudation of the western compared to the eastern Alps. Chemical denudation rates are highest in the external Alps dominated by carbonate sedimentary rocks, where they make up about one third of total denudation. The high rates cannot be explained without anhydrite dissolution. We estimated that only 45% of the sediments mobilized in headwaters are exported out off the Alps, most sediments being trapped in artificial reservoirs. The total amount of sediment annually trapped within the Alps equates to 43 Mt. When corrected for sediment storage, we obtain an area-weighted mean total denudation rate for the Alps of about 0.32 mm a− 1. The pre-dam rate might be as high as 0.42 mm a− 1. In total, ca. 35 plus 23 Mt of mass are exported each year out of the Alps as solids and solutes, respectively. These rates are not enough to out pace modern rock uplift. Nevertheless, pattern of sediment yield across the Alps coincides roughly with the intensity of glacial conditioning and modern rock uplift, supporting the hypothesis of an erosion-driven uplift of the Alps.
Resumo:
Background: Patients presenting to the emergency department (ED) currently face inacceptable delays in initial treatment, and long, costly hospital stays due to suboptimal initial triage and site-of-care decisions. Accurate ED triage should focus not only on initial treatment priority, but also on prediction of medical risk and nursing needs to improve site-of-care decisions and to simplify early discharge management. Different triage scores have been proposed, such as the Manchester triage system (MTS). Yet, these scores focus only on treatment priority, have suboptimal performance and lack validation in the Swiss health care system. Because the MTS will be introduced into clinical routine at the Kantonsspital Aarau, we propose a large prospective cohort study to optimize initial patient triage. Specifically, the aim of this trial is to derive a three-part triage algorithm to better predict (a) treatment priority; (b) medical risk and thus need for in-hospital treatment; (c) post-acute care needs of patients at the most proximal time point of ED admission. Methods/design: Prospective, observational, multicenter, multi-national cohort study. We will include all consecutive medical patients seeking ED care into this observational registry. There will be no exclusions except for non-adult and non-medical patients. Vital signs will be recorded and left over blood samples will be stored for later batch analysis of blood markers. Upon ED admission, the post-acute care discharge score (PACD) will be recorded. Attending ED physicians will adjudicate triage priority based on all available results at the time of ED discharge to the medical ward. Patients will be reassessed daily during the hospital course for medical stability and readiness for discharge from the nurses and if involved social workers perspective. To assess outcomes, data from electronic medical records will be used and all patients will be contacted 30 days after hospital admission to assess vital and functional status, re-hospitalization, satisfaction with care and quality of life measures. We aim to include between 5000 and 7000 patients over one year of recruitment to derive the three-part triage algorithm. The respective main endpoints were defined as (a) initial triage priority (high vs. low priority) adjudicated by the attending ED physician at ED discharge, (b) adverse 30 day outcome (death or intensive care unit admission) within 30 days following ED admission to assess patients risk and thus need for in-hospital treatment and (c) post acute care needs after hospital discharge, defined as transfer of patients to a post-acute care institution, for early recognition and planning of post-acute care needs. Other outcomes are time to first physician contact, time to initiation of adequate medical therapy, time to social worker involvement, length of hospital stay, reasons fordischarge delays, patient’s satisfaction with care, overall hospital costs and patients care needs after returning home. Discussion: Using a reliable initial triage system for estimating initial treatment priority, need for in-hospital treatment and post-acute care needs is an innovative and persuasive approach for a more targeted and efficient management of medical patients in the ED. The proposed interdisciplinary , multi-national project has unprecedented potential to improve initial triage decisions and optimize resource allocation to the sickest patients from admission to discharge. The algorithms derived in this study will be compared in a later randomized controlled trial against a usual care control group in terms of resource use, length of hospital stay, overall costs and patient’s outcomes in terms of mortality, re-hospitalization, quality of life and satisfaction with care.
Resumo:
Using pollen percentages and charcoal influx to reconstruct the Holocene vegetation and fire history, we differentiate six possible responses of plants to fire of medium and high frequency: fire-intolerant, fire damaged, fire-sensitive, fire-indifferent, fire-enhanced and fire-adapted. The fire sensitivity of 17 pollen types, representing 20 woody species in the southern Alps, is validated by comparison with today's ecological studies of plant chronosequences. A surprising coincidence of species reaction to fire of medium frequency is character istic for completely different vegetation types, such as woodlands dominated byAbies alba (7000 years ago) andCastanea sativa (today). The temporal persistence of post-fire behaviour of plant taxa up to thousands of years suggests a generally valid species-related fire sensitivity that may be influenced only in part by changing external conditions. A non-analogous behaviour of woody taxa after fire is documented for high fire frequencies. Divergent behaviour patterns of plant taxa in response to medium and high fire frequencies (e.g., increases and decreases ofAlnus glutinosa) also indicate that post-fire plant reactions may change with increasing fire fre quency.
Resumo:
Pelvic discontinuity is a complex problem in revision total hip arthroplasty. Although rare, the incidence is likely to increase due to the ageing population and the increasing number of total hip arthroplasties being performed. The various surgical options available to solve this problem include plating, massive allografts, reconstruction rings, custom triflanged components and tantalum implants. However, the optimal solution remains controversial. None of the known methods completely solves the major obstacles associated with this problem, such as restoration of massive bone loss, implant failure in the short- and long-term and high complication rates. This review discusses the diagnosis, decision making, and treatment options of pelvic discontinuity in revision total hip arthroplasty.
Resumo:
Switzerland has an extraordinarily rich archaeological heritage from the Neolithic and the Bronze Age, dating back nearly 7000 years. Since the mid-19th century, the first pile dwellings were discovered in the lakes of the Central Plateau. Since 2011 these sites are part of the UNESCO world heritage „Prehistoric pile-dwellings around the Alps“. Not only lakes, but also Swiss mountains preserve extraordinary archaeological remains: from an alpine pass in the Bernese Alps prehistoric objects are melting out from the ice. Perfect preservation conditions and modern archaeological methods allow exploring the development of early agrarian societies in this part of the world. We can reconstruct their settlements and follow their exchange with other communities. Archaeology under water and in alpine environments allows fascinating insights into the beginnings of our history.
Resumo:
1 Pollen and charcoal analysis at two lakes in southern Switzerland revealed that fire has had a prominent role in changing the woodland composition of this area for more than 7000 years. 2 The sediment of Lago di Origlio for the period between 5100 and 3100 bc cal. was sampled continuously with a time interval of about 10 years. Peaks of charcoal particles were significantly correlated with repeated declines in pollen of Abies, Hedera, Tilia, Ulmus, Fraxinus excelsior t., Fagus and Vitis and with increases in Alnus glutinosa t., shrubs (e.g. Corylus, Salix and Sambucus nigra t.) and several herbaceous species. The final disappearance of the lowland Abies alba stands at around 3150 bc cal. may be an example of a fire-caused local extinction of a fire-intolerant species. 3 Forest fires tended to diminish pollen diversity. The charcoal peaks were preceded by pollen types indicating human activity. Charcoal minima occurred during periods of cold humid climate, when fire susceptibility would be reduced. 4 An increase of forest fires at about 2100 bc cal. severely reduced the remaining fire-sensitive plants: the mixed-oak forest was replaced by a fire-tolerant alder–oak forest. The very strong increase of charcoal influx, and the marked presence of anthropogenic indicators, point to principally anthropogenic causes. 5 We suggest that without anthropogenic disturbances Abies alba would still form lowland forests together with various deciduous broadleaved tree taxa.
Resumo:
Temperature reconstructions for the end of the Pleistocene and the first half of the Holocene based on biotic proxies are rare for inland Europe around 49°N. We analysed a 7 m long sequence of lake deposits in the Vihorlat Mts in eastern Slovakia (820 m a.s.l.). Chironomid head capsules were used to reconstruct mean July temperature (TJuly), other proxies (diatoms, green algae, pollen, geochemistry) were used to reconstruct local environmental changes that might have affected the climate reconstruction, such as epilimnetic total phosphorus concentrations (TP), lake level changes and development of surrounding vegetation. During the Younger Dryas (YD), temperature fluctuated between 7 and 11 °C, with distinct, decadal to centennial scale variations, that agree with other palaeoclimate records in Europe such as δ18O content in stalagmites or Greenland ice cores. The results indicate that the site was somewhat colder than expected from the general south-to-north YD temperature gradient within Europe, possibly because of north-facing exposition. The warmer phases of the YD were characterised by low water level or even complete desiccation of the lake (12,200-12,400 cal yr BP). At the Late-Glacial/Holocene transition TJuly steeply increased from from 11 to 15.5 °C (11,700-11,400 cal yr BP) - the highest TJuly for entire sequence. This rapid climate change was reflected by all proxies as a compositional change and increasing species diversity. The open woodlands of Pinus, Betula, Larix and Picea were replaced by broad-leaved temperate forests dominated by Betula, later by Ulmus and finally by Corylus (ca 9700 cal yr BP). At the same time, input of eroded coarse-grained material into the lake decreased and organic matter (LOI) and biogenic silica increased. The Early-Holocene climate was rather stable till 8700 cal yr BP, with temporary decrease in TJuly around 11,200 cal yr BP. The lake was productive with a well-developed littoral, as indicated by both diatoms and chironomids. A distinct decline of TJuly to 10 °C between 8700 and 8000 cal yr BP was associated with decreasing chironomid diversity and increasing climate moistening indicated by pollen. Tychoplanktonic and phosphorus-demanding diatoms increased which might be explained by hydrological and land-cover changes. Later, a gradual warming started after 7000 cal yr BP and representation of macrophytes, periphytic diatoms and littoral chironomids increased. Our results suggest that the Holocene thermal maximum was taking place unusually early in the Holocene at our study site, but its timing might be affected by topography and mesoclimate. We further demonstrated that temperature changes had coincided with variations in local hydrology
Resumo:
The palynostratigraphy of two sediment cores from Soppensee, Central Switzerland (596 m asl) was correlated with nine regional pollen assemblage zones defined for the Swiss Plateau. This biostratigraphy shows that the sedimentary record of Soppensee includes the last 15 000 years, i.e. the entire Late-glacial and Holocene environmental history. The vegetation history of the Soppensee catchment was inferred by pollen and plant-macrofossil analyses on three different cores taken in the deepest part of the lake basin (27 m). On the basis of a high-resolution varve and calibrated radiocarbonchronology it was possible to estimate pollen accumulation rates, which together with the pollen percentage data, formed the basis for the interpretation of the past vegetation dynamics. The basal sediment dates back to the last glacial. After reforestation with juniper and birch at ca. 12 700 B.P., the vegetation changed at around 12 000 B.P. to a pine-birch woodland and at the onset of the Holocene to a mixed deciduous forest. At ca. 7000 B.P., fir expanded and dominated the vegetation with beech becoming predominant at ca. 50014C-years later until sometime during the Iron Age. Large-scale deforestation, especially during the Middle Ages, altered the vegetation cover drastically. During the Late-glacial period two distinct regressive phases in vegetation development are demonstrated, namely, the Aegelsee oscillation (equivalent to the Older Dryas biozone) and the Younger Dryas biozone. No unambiguous evidence for Holocene climatic change was detected at Soppensee. Human presence is indicated by early cereal pollen and distinct pulses of forest clearance as a result of human activity can be observed from the Neolithic period onwards.