18 resultados para 319920101120-1-track


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Patient management following elective cranial surgery varies between different neurosurgical institutions. Early routine postoperative cranial computed tomography (CT) is often performed while keeping patients sedated and ventilated for several hours. We hypothesize that fast track management without routine CT scanning, i.e., early extubation within one hour allowing neurological monitoring, is safe and does not increase the rate of return to OR compared with published data. Methods: We prospectively screened 1118 patients with cranial procedures performed at our department over a period of two years. 420 patients with elective brain surgery older than 18 years with no history of prior cranial surgery were included. Routine neurosurgical practice as it is performed at our department was not altered for this observational study. Fast track management was aimed for all cases, extubated and awake patients were further monitored. CT scanning within 48 hours after surgery was not performed except for unexpected neurological deterioration. This study was registered at ClinicalTrials.gov (NCT01987648). Results: 420 elective craniotomies were performed for 310 supra- and 110 infratentorial lesions. 398 patients (94.8%) were able to be extubated within 1 hour, 21 (5%) within 6 hours, and 1 patient (0.2%) was extubated 9 hours after surgery. Emergency CT within 48 hours was performed for 36 patients (8.6%, 26 supra- and 10 infratentorial cases) due to unexpected neurological worsening. Of these 36 patients 5 had to return to the OR (hemorrhage in 3, swelling in 2 cases). Return to OR rate of all included cases was 1.2%. This rate compares favorably with 1-4% as quoted in the current literature. No patient returned to the OR without prior CT imaging. Of 398 patients extubated within one hour 2 (0.5%) returned to the OR. Patients who couldn’t be extubated within the first hour had a higher risk of returning to the OR (3 of 22, i.e., 14%). Overall 30-day mortality was 0.2% (1 patient). Conclusions: Early extubation and CT imaging performed only for patients with unexpected neurological worsening after elective craniotomy procedures is safe and does not increase patient mortality or the return to OR rate. With this fast track approach early postoperative cranial CT for detection of postoperative complications in the absence of an unexpected neurological finding is not justified. Acknowledgments The authors thank Nicole Söll, study nurse, Department of Neurosurgery, Bern University Hospital, Switzerland for crucial support in data collection and managing the database.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested the assumption that ego depletion would affect the sprint start in a sample of N = 38 athletes without track and field experience in an experiment by applying a mixed between- (depletion vs. non-depletion) within- (T1: before manipulation of ego depletion vs. T2: after manipulation of ego depletion) subjects design. We assumed that ego depletion would increase the possibility for a false start, as regulating the impulse to initiate the sprinting movement too soon before the starting signal requires self-control. In line with our assumption, we found a significant interaction as there was only a significant increase in the number of false starts from T1 to T2 for the depletion group while this was not the case for the non-depletion group. We conclude that ego depletion has a detrimental influence on the sprint start in athletes without track and field experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive positioning systems produce user location information for third-party providers of positioning services. Since the tracked wireless devices do not participate in the positioning process, passive positioning can only rely on simple, measurable radio signal parameters, such as timing or power information. In this work, we provide a passive tracking system for WiFi signals with an enhanced particle filter using fine-grained power-based ranging. Our proposed particle filter provides an improved likelihood function on observation parameters and is equipped with a modified coordinated turn model to address the challenges in a passive positioning system. The anchor nodes for WiFi signal sniffing and target positioning use software defined radio techniques to extract channel state information to mitigate multipath effects. By combining the enhanced particle filter and a set of enhanced ranging methods, our system can track mobile targets with an accuracy of 1.5m for 50% and 2.3m for 90% in a complex indoor environment. Our proposed particle filter significantly outperforms the typical bootstrap particle filter, extended Kalman filter and trilateration algorithms.