27 resultados para 1H NMR


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cultivation of dessert apples has to meet the consumer's increasing demand for high fruit quality and a sustainable mostly residue-free production while ensuring a competitive agricultural productivity. It is therefore of great interest to know the impact of different cultivation methods on the fruit quality and the chemical composition, respectively. Previous studies have demonstrated the feasibility of High Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy directly performed on apple tissue as analytical tool for metabonomic studies. In this study, HR-MAS NMR spectroscopy is applied to apple tissue to analyze the metabolic profiles of apples grown under 3 different cultivation methods. Golden Delicious apples were grown applying organic (Bio), integrated (IP) and low-input (LI) plant protection strategies. A total of 70 1H HR-MAS NMR spectra were analyzed by means of principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Apples derived from Bio-production could be well separated from the two other cultivation methods applying both, PCA and PLS-DA. Apples obtained from integrated (IP) and low-input (LI) production discriminated when taking the third PLS-component into account. The identified chemical composition and the compounds responsible for the separation, i.e. the PLS-loadings, are discussed. The results are compared with fruit quality parameters assessed by conventional methods. The present study demonstrates the potential of HR-MAS NMR spectroscopy of fruit tissue as analytical tool for finding markers for specific fruit production conditions like the cultivation method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy was applied in combination with multivariate statistical analyses to study the metabolic response of whole cells to the treatment with a hexacationic ruthenium metallaprism [1]6+ as potential anticancer drug. Human ovarian cancer cells (A2780), the corresponding cisplatin resistant cells (A2780cisR), and human embryonic kidney cells (HEK-293) were each incubated for 24 h and 72 h with [1]6+ and compared to untreated cells. Different responses were obtained depending on the cell type and incubation time. Most pronounced changes were found for lipids, choline containing compounds, glutamate and glutathione, nucleotide sugars, lactate, and some amino acids. Possible contributions of these metabolites to physiologic processes are discussed. The time-dependent metabolic response patterns suggest that A2780 cells on one hand and HEK-293 cells and A2780cisR cells on the other hand may follow different cell death pathways and exist in different temporal stages thereof.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spite of the facts that magnetic resonance spectroscopy (MRS) is applied as clinical tool in non-specialized institutions and that semi-automatic acquisition and processing tools can be used to produce quantitative information from MRS exams without expert information, issues of spectral quality and quality assessment are neglected in the literature of MR spectroscopy. Even worse, there is no consensus among experts on concepts or detailed criteria of quality assessment for MR spectra. Furthermore, artifacts are not at all conspicuous in MRS and can easily be taken for true, interpretable features. This article aims to increase interest in issues of spectral quality and quality assessment, to start a larger debate on generally accepted criteria that spectra must fulfil to be clinically and scientifically acceptable, and to provide a sample gallery of artifacts, which can be used to raise awareness for potential pitfalls in MRS.