5 resultados para 1H NMR
em CaltechTHESIS
Resumo:
The behaviors of six new cyclophane receptors for organic guest molecules in aqueous media are reported. These new hosts are modifications of more basic parent structures, and the main goal of their examination has been to determine how the modifications affect host selectivity for cationic guests. In particular, we have been interested in determining how additional non-covalent binding interactions can complement the cation-π interactions active in the parent systems. Three types of modifications were made to these systems. Firstly, neutral methoxy and bromine substituents were added to produce four of the six new macrocycles. Secondly, two additional aromatic rings (relative to the parent host) capable of making cation-π interactions with charged guest species were appended. Thirdly, a negatively charged carboxyl group was attached to produce a cavity in which electrostatic interactions should enhance cationic guest binding. ^1H-NMR and circular dichroic techniques were employed to determine the binding affinities of a wide variety of organic guests for the parent and modified structures in aqueous media.
Bromination of the parent host greatly enhances its binding in a general fashion, primarily as the result of hydrophobic interactions. The addition of methoxy groups does not enhance binding, apparently as a result of a collapse of the hosts into a conformation that is not suitable for binding. The appendage of extra aromatic rings enhances the binding of positively charged guests, most likely in response to more complete encapsulation of guest species. The addition of a negatively charged carboxylate enhances the binding to only selective groups of cationic guests. AM1 calculations of the electrostatic potentials of several guests molecules suggests that the enhancements seen with the modified receptor compared to the parent are most likely the result of close contact between regions of highest potential on the guest and the appended carboxylate.
Resumo:
This study examines binding of α- and β-D-glucose in their equilibrium mixture to the glucose transporter (GLUT1) in human erythrocyte membrane preparations by an ^1H NMR method, the transferred NOE (TRNOE). This method is shown theoretically and experimentally to be a sensitive probe of weak ligand-macromolecule interactions. The TRNOEs observed are shown to arise solely from glucose binding to GLUT1. Sites at both membrane faces contribute to the TRNOEs. Binding curves obtained are consistent with a homogeneous class of sugar sites, with an apparent KD which varies (from ~30 mM to ~70 mM for both anomers) depending on the membrane preparation examined. Preparations with a higher proportion of the cytoplasmic membrane face exposed to bulk solution yield higher apparent KKDs. The glucose transport inhibitor cytochalasin B essentially eliminates the TRNOE. Nonlinearity was found in the dependence on sugar concentration of the apparent inhibition constant for cytochalasin B reversal of the TRNOE observed in the α anomer (and probably the β anomer); such nonlinearity implies the existence of ternary complexes of sugar, inhibitor and transporter. The inhibition results furthermore imply the presence of a class of relatively high-affinity (KD < 2mM) sugar sites specific for the α anomer which do not contribute to NMR-observable binding. The presence of two classes of sugar-sensitive cytochalasin B sites is also indicated. These results are compared with predictions of the alternating conformer model of glucose transport. Variation of apparent KD in the NMR-observable sites, the formation of ternary complexes and the presence of an anomer-specific site are shown to be inconsistent with this model. An alternate model is developed which reconciles these results with the known transport behavior of GLUT1. In this model, the transporter possesses (at minimum) three classes of sugar sites: (i) transport sites, which are alternately exposed to the cytoplasmic or the extracellular compartment, but never to both simultaneously, (ii) a class of sites (probably relatively low-affinity) which are confined to one compartment, and (iii) the high-affinity α anomer-specific sites, which are confined to the cytoplasmic compartment.
Resumo:
The thermal decomposition of Cp*Ti(CH_3)_2 (Cp*≡ ƞ^5-C_5Me_5) toluene solution follows cleanly first-order kinetics and produces a single titanium product Cp*(C_5Me_4CH_2)Ti(CH_3) concurrent with the evolution of one equivalent of methane. Labeling studies using Cp*_2Ti- (CD_3)_2 and (Cp*-d_(15))_2Ti(CH_3)_2 show the decomposition to be intramolecular and the methane to be produced by the coupling of a methyl group with a hydrogen from the other TiCH_3 group. Activation parameters, ΔH^‡ and ΔS^‡, and kinetic deuterium isotope effects have been measured. The alternative decomposition pathways of α-hydrogen abstraction and a-hydrogen elimination, both leading to a titanium-methylidene intermediate, are discussed.
The insertion of unactivated acetylenes into the metal-hydride bonds of Cp*_2MH_2 (M = Zr, Hf) proceeds rapidly at low temperature to form monoand/ or bisinsertion products, dependent upon the steric bulk of the acetylene substituents. Cp*_2M(H)(C(Me)=CHMe), Cp*_2M(H)(CH=CHCMe_3), Cp*_2M(H)-(CH=CHPh), Cp*_2M(CH=CHPh)_2, Cp*_2M(CH=CHCH_3)_2 and Cp*_2Zr- (CH=CHCH_2CH_3)_2 have been isolated and characterized. To extend the study of unsaturated-carbon ligands, Cp*_2M(C≡CCH_3)_2 have been prepared by treating Cp*_2MCl_2 with LiC≡CCH_3. The reactivity of many of these complexes with carbon monoxide and dihydrogen is surveyed. The mono(2- butenyl) complexes Cp*_2M(H)(C(Me)=CHMe) rearrange at room temperature, forming the crotyl-hydride species Cp*_2M(H)(ƞ^3-C_4H_7). The bis(propenyl) and bis(l-butenyl) zirconium complexes Cp*_2Zr(CH=CHR)_2 (R = CH_3, CH_2CH_3) also rearrange, forming zirconacyclopentenes. Labeling studies, reaction chemistry, and kinetic measurements, including deuterium isotope effects, demonstrate that the unusual 6-hydrogen elimination from an sp^2-hybridized carbon is the first step in these latter rearrangements but is not observed in the former. Details of these mechanisms and the differences in reactivity of the zirconium and hafnium complexes are discussed.
The reactions of hydride- and alkyl-carbonyl derivatives of permethylniobocene with equimolar amounts of trialkylaluminum reagents occur rapidly producing the carbonyl adducts Cp*_2Nb(R)(COAlR'_3) (R = H, CH_3, CH_2CH_3, CH_2CH_2Ph, C(Me)=CHMe; R' = Me, Et). The hydride adduct Cp*_2NbH_3•AlEt_3 has also been formed. In solution, each of these compounds exists in equilibrium with the uncomplexed species. The formation constants for Cp*_2Nb(H)(COA1R'_R) have been measured. They indicate the steric bulk of the Cp* ligands plays a deciding factor in the isolation of the first example of an aluminum Lewis acid bound to a carbonyl-oxygen in preference to a metalhydride. Reactions of Cp*_2Nb(H)CO with other Lewis acids and of the one:one adducts with H_2, CO and C_2H_4 are also discussed.
Cp*_2Nb(H)(C_2H_4) also reacts with equimolar amounts of trialkylaluminum reagents, forming a one:one complex that ^1H NMR spectroscopy indicates contains a Nb-CH_2CH_2-Al bridge. This adduct also exists in equilibrium with the uncomplexed species in solution. The formation constant for Cp*_2N+/b(H)(CH_2CH_2ĀlEt_3) has been measured. Reactions of Cp*_2Nb(H)(C_2H_4) with other Lewis acids and the reactions of Cp*_2N+b(H)- (CH_2CH_2ĀlEt_3) with CO and C_2H_4 are described, as are the reactions of Cp_*2Nb(H)(CH_2=CHR) (R = Me, Ph), Cp*_2Nb(H)(CH_3C≡CCH_3) and Cp*_2Ti-(C_2H_4) with AlEt_3.
Resumo:
Part one of this thesis consists of two sections. In the first section the fluorine chemical shift of a single crystal CaF_2 has been measured as a function of external pressure up to 4 kilobar at room temperature using multiple pulse NMR techniques. The pressure dependence of the shift is found to be -1.7 ± 1 ppm/kbar, while a theoretical calculation using an overlap model predicts a shift of -0.46 ppm/kbar. In the second section a separation of the chemical shift tensor into physically meaningful "geometrical" and "chemical" contributions is presented and a comparison of the proposed model calculations with recently reported data on hydroxyl proton chemical shift tensors demonstrates, that for this system, the geometrical portion accounts for the qualitative features of the measured tensors.
Part two of the thesis consists of a study of fluoride ion motion in β-PbF_2 doped with NaF by measurement of the ^(19)F transverse relaxation time (T_2), spin lattice relaxation time (T_1) and the spin lattice relaxation time in the rotating frame (T_(1r)). Measurements over the temperature range of -50°C to 160°C lead to activation energies for T_1, T_(1r) and T_2 of 0.205 ± 0.01, 0.29 + 0.02 and 0.27 ± 0.01 ev/ion, and a T_(1r) minimum at 56°C yields a correlation time of 0.74 μsec. Pressure dependence of T_1 and T_2 yields activation volumes of <0.2 cm^3/g-mole and 1.76 ± 0.05 cm^3/g-mole respectively. These data along with the measured magnetic field independence of T_1 suggest that the measured T_1's are not caused by ^(19)F motion, but by thermally excited carriers.
Part three of the thesis consists of a study of two samples of Th_4H_(15), prepared under different conditions but both having the proper ratio of H/Th (to within 1%). The structure of the Th_4H_(15) as suggested by X-ray measurements is confirmed through a moment analysis of the rigid lattice line shape. T_1 and T_2 measurements above 390 K furnish activation energies of 16.3 ± 1.2 kcal/mole and 18.0 ± 3.0 kcal/mole, respectively. Below 350 K, T_(1r) measurements furnish an activation energy of 10.9 ± 0.7 kcal/mole, indicating most probably more than a single mechanism for proton motion. A time-temperature hysteresis effect of the proton motion was found in one of the two samples and is strongly indicative of a phase change. T_1 at room temperature and below is dominated by relaxation due to conduction electrons with the product T_1T being 180 ± 10 K-sec. Using multiple pulse techniques to greatly reduce homonuclear dipolar broadening, a temperature-dependent line shift was observed, and the chemical shift anisotropy is estimated to be less than 16 ppm.
Resumo:
In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.
The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.
The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.
An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.